AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
3.445 0.078 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.701
Model: OLS Adj. R-squared: 0.653
Method: Least Squares F-statistic: 14.83
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.26e-05
Time: 04:00:53 Log-Likelihood: -99.233
No. Observations: 23 AIC: 206.5
Df Residuals: 19 BIC: 211.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 0.6627 48.663 0.014 0.989 -101.191 102.516
C(dose)[T.1] 60.0732 58.938 1.019 0.321 -63.285 183.431
expression 9.9773 9.004 1.108 0.282 -8.869 28.823
expression:C(dose)[T.1] -0.6417 11.118 -0.058 0.955 -23.912 22.629
Omnibus: 1.307 Durbin-Watson: 1.860
Prob(Omnibus): 0.520 Jarque-Bera (JB): 1.185
Skew: 0.482 Prob(JB): 0.553
Kurtosis: 2.445 Cond. No. 107.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.701
Model: OLS Adj. R-squared: 0.671
Method: Least Squares F-statistic: 23.40
Date: Thu, 21 Nov 2024 Prob (F-statistic): 5.78e-06
Time: 04:00:53 Log-Likelihood: -99.235
No. Observations: 23 AIC: 204.5
Df Residuals: 20 BIC: 207.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 2.9216 28.194 0.104 0.918 -55.891 61.734
C(dose)[T.1] 56.7069 8.301 6.831 0.000 39.391 74.022
expression 9.5564 5.149 1.856 0.078 -1.184 20.297
Omnibus: 1.354 Durbin-Watson: 1.872
Prob(Omnibus): 0.508 Jarque-Bera (JB): 1.214
Skew: 0.494 Prob(JB): 0.545
Kurtosis: 2.461 Cond. No. 38.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:00:53 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.002
Model: OLS Adj. R-squared: -0.045
Method: Least Squares F-statistic: 0.04332
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.837
Time: 04:00:53 Log-Likelihood: -113.08
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 70.0319 47.087 1.487 0.152 -27.891 167.955
expression 1.8633 8.952 0.208 0.837 -16.753 20.479
Omnibus: 3.286 Durbin-Watson: 2.488
Prob(Omnibus): 0.193 Jarque-Bera (JB): 1.575
Skew: 0.295 Prob(JB): 0.455
Kurtosis: 1.862 Cond. No. 35.6

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.482 0.247 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.544
Model: OLS Adj. R-squared: 0.420
Method: Least Squares F-statistic: 4.373
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0294
Time: 04:00:53 Log-Likelihood: -69.412
No. Observations: 15 AIC: 146.8
Df Residuals: 11 BIC: 149.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 42.2789 77.268 0.547 0.595 -127.786 212.344
C(dose)[T.1] -70.2187 125.016 -0.562 0.586 -345.378 204.940
expression 4.5919 13.966 0.329 0.748 -26.147 35.331
expression:C(dose)[T.1] 19.6886 21.554 0.913 0.381 -27.751 67.129
Omnibus: 0.073 Durbin-Watson: 1.241
Prob(Omnibus): 0.964 Jarque-Bera (JB): 0.073
Skew: -0.002 Prob(JB): 0.964
Kurtosis: 2.657 Cond. No. 128.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.509
Model: OLS Adj. R-squared: 0.428
Method: Least Squares F-statistic: 6.229
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0140
Time: 04:00:53 Log-Likelihood: -69.960
No. Observations: 15 AIC: 145.9
Df Residuals: 12 BIC: 148.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -2.9955 58.866 -0.051 0.960 -131.254 125.263
C(dose)[T.1] 43.0635 15.681 2.746 0.018 8.897 77.230
expression 12.8582 10.564 1.217 0.247 -10.159 35.875
Omnibus: 0.935 Durbin-Watson: 0.996
Prob(Omnibus): 0.626 Jarque-Bera (JB): 0.785
Skew: -0.290 Prob(JB): 0.675
Kurtosis: 2.041 Cond. No. 47.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:00:53 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.201
Model: OLS Adj. R-squared: 0.140
Method: Least Squares F-statistic: 3.270
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0937
Time: 04:00:53 Log-Likelihood: -73.617
No. Observations: 15 AIC: 151.2
Df Residuals: 13 BIC: 152.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -33.4544 70.880 -0.472 0.645 -186.582 119.673
expression 22.1799 12.265 1.808 0.094 -4.317 48.677
Omnibus: 0.173 Durbin-Watson: 1.634
Prob(Omnibus): 0.917 Jarque-Bera (JB): 0.320
Skew: 0.199 Prob(JB): 0.852
Kurtosis: 2.405 Cond. No. 46.4