AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.876 0.186 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.690
Model: OLS Adj. R-squared: 0.642
Method: Least Squares F-statistic: 14.13
Date: Thu, 21 Nov 2024 Prob (F-statistic): 4.45e-05
Time: 05:01:00 Log-Likelihood: -99.619
No. Observations: 23 AIC: 207.2
Df Residuals: 19 BIC: 211.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -136.8772 318.506 -0.430 0.672 -803.517 529.763
C(dose)[T.1] -372.8930 525.529 -0.710 0.487 -1472.838 727.052
expression 18.6356 31.057 0.600 0.556 -46.367 83.639
expression:C(dose)[T.1] 43.6251 52.360 0.833 0.415 -65.966 153.216
Omnibus: 1.254 Durbin-Watson: 1.602
Prob(Omnibus): 0.534 Jarque-Bera (JB): 1.152
Skew: 0.426 Prob(JB): 0.562
Kurtosis: 2.310 Cond. No. 1.54e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.679
Model: OLS Adj. R-squared: 0.647
Method: Least Squares F-statistic: 21.17
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.16e-05
Time: 05:01:00 Log-Likelihood: -100.03
No. Observations: 23 AIC: 206.1
Df Residuals: 20 BIC: 209.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -294.2527 254.484 -1.156 0.261 -825.096 236.591
C(dose)[T.1] 64.8501 11.873 5.462 0.000 40.083 89.617
expression 33.9836 24.812 1.370 0.186 -17.773 85.741
Omnibus: 0.989 Durbin-Watson: 1.509
Prob(Omnibus): 0.610 Jarque-Bera (JB): 0.850
Skew: 0.209 Prob(JB): 0.654
Kurtosis: 2.156 Cond. No. 620.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:01:00 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.201
Model: OLS Adj. R-squared: 0.162
Method: Least Squares F-statistic: 5.269
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0321
Time: 05:01:00 Log-Likelihood: -110.53
No. Observations: 23 AIC: 225.1
Df Residuals: 21 BIC: 227.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 705.0070 272.492 2.587 0.017 138.329 1271.685
expression -61.9604 26.994 -2.295 0.032 -118.097 -5.824
Omnibus: 1.570 Durbin-Watson: 2.393
Prob(Omnibus): 0.456 Jarque-Bera (JB): 0.952
Skew: 0.007 Prob(JB): 0.621
Kurtosis: 2.003 Cond. No. 430.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
5.252 0.041 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.620
Model: OLS Adj. R-squared: 0.516
Method: Least Squares F-statistic: 5.972
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0114
Time: 05:01:00 Log-Likelihood: -68.051
No. Observations: 15 AIC: 144.1
Df Residuals: 11 BIC: 146.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -1424.3595 1103.155 -1.291 0.223 -3852.388 1003.669
C(dose)[T.1] 407.1229 1276.868 0.319 0.756 -2403.244 3217.490
expression 137.1599 101.424 1.352 0.203 -86.072 360.392
expression:C(dose)[T.1] -34.4461 116.956 -0.295 0.774 -291.865 222.973
Omnibus: 1.228 Durbin-Watson: 1.015
Prob(Omnibus): 0.541 Jarque-Bera (JB): 0.908
Skew: -0.322 Prob(JB): 0.635
Kurtosis: 1.982 Cond. No. 3.08e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.617
Model: OLS Adj. R-squared: 0.553
Method: Least Squares F-statistic: 9.649
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00318
Time: 05:01:00 Log-Likelihood: -68.110
No. Observations: 15 AIC: 142.2
Df Residuals: 12 BIC: 144.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -1142.6181 528.090 -2.164 0.051 -2293.227 7.990
C(dose)[T.1] 31.0878 15.322 2.029 0.065 -2.295 64.471
expression 111.2557 48.546 2.292 0.041 5.482 217.029
Omnibus: 0.920 Durbin-Watson: 0.938
Prob(Omnibus): 0.631 Jarque-Bera (JB): 0.825
Skew: -0.371 Prob(JB): 0.662
Kurtosis: 2.124 Cond. No. 893.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:01:00 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.485
Model: OLS Adj. R-squared: 0.445
Method: Least Squares F-statistic: 12.24
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00392
Time: 05:01:00 Log-Likelihood: -70.323
No. Observations: 15 AIC: 144.6
Df Residuals: 13 BIC: 146.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -1682.9480 507.762 -3.314 0.006 -2779.902 -585.994
expression 162.0544 46.311 3.499 0.004 62.006 262.103
Omnibus: 0.501 Durbin-Watson: 1.638
Prob(Omnibus): 0.778 Jarque-Bera (JB): 0.577
Skew: 0.240 Prob(JB): 0.749
Kurtosis: 2.168 Cond. No. 770.