AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.327 0.574 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.669
Model: OLS Adj. R-squared: 0.616
Method: Least Squares F-statistic: 12.78
Date: Thu, 21 Nov 2024 Prob (F-statistic): 8.38e-05
Time: 04:51:45 Log-Likelihood: -100.40
No. Observations: 23 AIC: 208.8
Df Residuals: 19 BIC: 213.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -110.2565 157.909 -0.698 0.493 -440.764 220.251
C(dose)[T.1] 244.9848 214.158 1.144 0.267 -203.253 693.222
expression 19.1308 18.355 1.042 0.310 -19.286 57.548
expression:C(dose)[T.1] -22.3184 24.983 -0.893 0.383 -74.608 29.971
Omnibus: 0.214 Durbin-Watson: 1.951
Prob(Omnibus): 0.899 Jarque-Bera (JB): 0.415
Skew: 0.024 Prob(JB): 0.812
Kurtosis: 2.343 Cond. No. 562.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.655
Model: OLS Adj. R-squared: 0.620
Method: Least Squares F-statistic: 18.96
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.41e-05
Time: 04:51:45 Log-Likelihood: -100.88
No. Observations: 23 AIC: 207.8
Df Residuals: 20 BIC: 211.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -6.6888 106.674 -0.063 0.951 -229.206 215.828
C(dose)[T.1] 53.8266 8.741 6.158 0.000 35.593 72.060
expression 7.0837 12.389 0.572 0.574 -18.759 32.926
Omnibus: 1.610 Durbin-Watson: 2.021
Prob(Omnibus): 0.447 Jarque-Bera (JB): 1.030
Skew: 0.172 Prob(JB): 0.598
Kurtosis: 2.022 Cond. No. 214.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:51:45 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.048
Method: Least Squares F-statistic: 0.0003590
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.985
Time: 04:51:45 Log-Likelihood: -113.10
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 83.0399 175.497 0.473 0.641 -281.927 448.007
expression -0.3880 20.476 -0.019 0.985 -42.969 42.193
Omnibus: 3.311 Durbin-Watson: 2.483
Prob(Omnibus): 0.191 Jarque-Bera (JB): 1.565
Skew: 0.285 Prob(JB): 0.457
Kurtosis: 1.857 Cond. No. 211.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
10.953 0.006 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.792
Model: OLS Adj. R-squared: 0.735
Method: Least Squares F-statistic: 13.96
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000455
Time: 04:51:45 Log-Likelihood: -63.525
No. Observations: 15 AIC: 135.0
Df Residuals: 11 BIC: 137.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -265.3279 247.726 -1.071 0.307 -810.569 279.913
C(dose)[T.1] -697.9069 364.385 -1.915 0.082 -1499.912 104.098
expression 35.6764 26.548 1.344 0.206 -22.756 94.108
expression:C(dose)[T.1] 80.5766 39.139 2.059 0.064 -5.567 166.721
Omnibus: 1.003 Durbin-Watson: 0.814
Prob(Omnibus): 0.606 Jarque-Bera (JB): 0.881
Skew: -0.486 Prob(JB): 0.644
Kurtosis: 2.319 Cond. No. 889.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.712
Model: OLS Adj. R-squared: 0.664
Method: Least Squares F-statistic: 14.82
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000573
Time: 04:51:45 Log-Likelihood: -65.969
No. Observations: 15 AIC: 137.9
Df Residuals: 12 BIC: 140.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -611.1117 205.197 -2.978 0.012 -1058.198 -164.025
C(dose)[T.1] 51.9747 11.412 4.555 0.001 27.111 76.839
expression 72.7496 21.982 3.309 0.006 24.855 120.645
Omnibus: 4.374 Durbin-Watson: 0.692
Prob(Omnibus): 0.112 Jarque-Bera (JB): 1.420
Skew: 0.231 Prob(JB): 0.492
Kurtosis: 1.565 Cond. No. 341.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:51:45 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.214
Model: OLS Adj. R-squared: 0.153
Method: Least Squares F-statistic: 3.532
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0828
Time: 04:51:45 Log-Likelihood: -73.498
No. Observations: 15 AIC: 151.0
Df Residuals: 13 BIC: 152.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -514.8454 323.928 -1.589 0.136 -1214.650 184.959
expression 65.3843 34.792 1.879 0.083 -9.780 140.549
Omnibus: 1.358 Durbin-Watson: 2.205
Prob(Omnibus): 0.507 Jarque-Bera (JB): 0.810
Skew: -0.072 Prob(JB): 0.667
Kurtosis: 1.871 Cond. No. 339.