AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.933 | 0.346 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.683 |
Model: | OLS | Adj. R-squared: | 0.633 |
Method: | Least Squares | F-statistic: | 13.66 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 5.53e-05 |
Time: | 04:58:41 | Log-Likelihood: | -99.887 |
No. Observations: | 23 | AIC: | 207.8 |
Df Residuals: | 19 | BIC: | 212.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 242.9772 | 523.692 | 0.464 | 0.648 | -853.123 1339.077 |
C(dose)[T.1] | -602.1917 | 622.968 | -0.967 | 0.346 | -1906.079 701.695 |
expression | -16.9501 | 47.021 | -0.360 | 0.722 | -115.366 81.466 |
expression:C(dose)[T.1] | 58.8286 | 55.920 | 1.052 | 0.306 | -58.213 175.870 |
Omnibus: | 1.334 | Durbin-Watson: | 1.873 |
Prob(Omnibus): | 0.513 | Jarque-Bera (JB): | 1.173 |
Skew: | 0.399 | Prob(JB): | 0.556 |
Kurtosis: | 2.234 | Cond. No. | 2.33e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.665 |
Model: | OLS | Adj. R-squared: | 0.631 |
Method: | Least Squares | F-statistic: | 19.82 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.80e-05 |
Time: | 04:58:41 | Log-Likelihood: | -100.54 |
No. Observations: | 23 | AIC: | 207.1 |
Df Residuals: | 20 | BIC: | 210.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -220.2514 | 284.247 | -0.775 | 0.447 | -813.180 372.677 |
C(dose)[T.1] | 53.1185 | 8.575 | 6.194 | 0.000 | 35.231 71.006 |
expression | 24.6446 | 25.518 | 0.966 | 0.346 | -28.585 77.874 |
Omnibus: | 1.868 | Durbin-Watson: | 1.980 |
Prob(Omnibus): | 0.393 | Jarque-Bera (JB): | 1.256 |
Skew: | 0.311 | Prob(JB): | 0.534 |
Kurtosis: | 2.039 | Cond. No. | 746. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:58:41 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.021 |
Model: | OLS | Adj. R-squared: | -0.025 |
Method: | Least Squares | F-statistic: | 0.4591 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.505 |
Time: | 04:58:41 | Log-Likelihood: | -112.86 |
No. Observations: | 23 | AIC: | 229.7 |
Df Residuals: | 21 | BIC: | 232.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -241.3286 | 473.863 | -0.509 | 0.616 | -1226.781 744.124 |
expression | 28.8167 | 42.529 | 0.678 | 0.505 | -59.626 117.260 |
Omnibus: | 2.328 | Durbin-Watson: | 2.573 |
Prob(Omnibus): | 0.312 | Jarque-Bera (JB): | 1.293 |
Skew: | 0.245 | Prob(JB): | 0.524 |
Kurtosis: | 1.947 | Cond. No. | 746. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.290 | 0.600 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.472 |
Model: | OLS | Adj. R-squared: | 0.328 |
Method: | Least Squares | F-statistic: | 3.278 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0625 |
Time: | 04:58:41 | Log-Likelihood: | -70.510 |
No. Observations: | 15 | AIC: | 149.0 |
Df Residuals: | 11 | BIC: | 151.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 387.3636 | 483.844 | 0.801 | 0.440 | -677.570 1452.297 |
C(dose)[T.1] | -519.4123 | 1254.052 | -0.414 | 0.687 | -3279.562 2240.737 |
expression | -28.6462 | 43.309 | -0.661 | 0.522 | -123.970 66.677 |
expression:C(dose)[T.1] | 50.0014 | 108.380 | 0.461 | 0.654 | -188.542 288.544 |
Omnibus: | 2.057 | Durbin-Watson: | 0.962 |
Prob(Omnibus): | 0.358 | Jarque-Bera (JB): | 1.567 |
Skew: | -0.729 | Prob(JB): | 0.457 |
Kurtosis: | 2.382 | Cond. No. | 2.13e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.462 |
Model: | OLS | Adj. R-squared: | 0.372 |
Method: | Least Squares | F-statistic: | 5.148 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0243 |
Time: | 04:58:41 | Log-Likelihood: | -70.654 |
No. Observations: | 15 | AIC: | 147.3 |
Df Residuals: | 12 | BIC: | 149.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 298.1886 | 428.764 | 0.695 | 0.500 | -636.007 1232.384 |
C(dose)[T.1] | 59.0343 | 23.996 | 2.460 | 0.030 | 6.752 111.316 |
expression | -20.6617 | 38.377 | -0.538 | 0.600 | -104.278 62.955 |
Omnibus: | 2.844 | Durbin-Watson: | 0.978 |
Prob(Omnibus): | 0.241 | Jarque-Bera (JB): | 1.733 |
Skew: | -0.829 | Prob(JB): | 0.420 |
Kurtosis: | 2.844 | Cond. No. | 638. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:58:41 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.190 |
Model: | OLS | Adj. R-squared: | 0.128 |
Method: | Least Squares | F-statistic: | 3.055 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.104 |
Time: | 04:58:41 | Log-Likelihood: | -73.717 |
No. Observations: | 15 | AIC: | 151.4 |
Df Residuals: | 13 | BIC: | 152.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -491.5773 | 334.942 | -1.468 | 0.166 | -1215.175 232.021 |
expression | 51.2364 | 29.312 | 1.748 | 0.104 | -12.089 114.562 |
Omnibus: | 0.844 | Durbin-Watson: | 1.048 |
Prob(Omnibus): | 0.656 | Jarque-Bera (JB): | 0.784 |
Skew: | -0.360 | Prob(JB): | 0.676 |
Kurtosis: | 2.142 | Cond. No. | 422. |