AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.194 | 0.287 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.728 |
Model: | OLS | Adj. R-squared: | 0.685 |
Method: | Least Squares | F-statistic: | 16.92 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.35e-05 |
Time: | 05:17:21 | Log-Likelihood: | -98.148 |
No. Observations: | 23 | AIC: | 204.3 |
Df Residuals: | 19 | BIC: | 208.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 78.3859 | 208.282 | 0.376 | 0.711 | -357.553 514.325 |
C(dose)[T.1] | -723.1859 | 383.313 | -1.887 | 0.075 | -1525.469 79.098 |
expression | -2.4573 | 21.162 | -0.116 | 0.909 | -46.750 41.835 |
expression:C(dose)[T.1] | 78.7935 | 38.904 | 2.025 | 0.057 | -2.633 160.220 |
Omnibus: | 2.338 | Durbin-Watson: | 1.766 |
Prob(Omnibus): | 0.311 | Jarque-Bera (JB): | 1.990 |
Skew: | 0.668 | Prob(JB): | 0.370 |
Kurtosis: | 2.458 | Cond. No. | 1.15e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.669 |
Model: | OLS | Adj. R-squared: | 0.636 |
Method: | Least Squares | F-statistic: | 20.20 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.59e-05 |
Time: | 05:17:21 | Log-Likelihood: | -100.40 |
No. Observations: | 23 | AIC: | 206.8 |
Df Residuals: | 20 | BIC: | 210.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -150.9974 | 187.865 | -0.804 | 0.431 | -542.877 240.882 |
C(dose)[T.1] | 52.9862 | 8.525 | 6.215 | 0.000 | 35.203 70.769 |
expression | 20.8566 | 19.085 | 1.093 | 0.287 | -18.953 60.667 |
Omnibus: | 1.754 | Durbin-Watson: | 1.655 |
Prob(Omnibus): | 0.416 | Jarque-Bera (JB): | 1.040 |
Skew: | 0.129 | Prob(JB): | 0.594 |
Kurtosis: | 1.990 | Cond. No. | 440. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:17:21 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.029 |
Model: | OLS | Adj. R-squared: | -0.017 |
Method: | Least Squares | F-statistic: | 0.6316 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.436 |
Time: | 05:17:21 | Log-Likelihood: | -112.76 |
No. Observations: | 23 | AIC: | 229.5 |
Df Residuals: | 21 | BIC: | 231.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -169.6516 | 313.861 | -0.541 | 0.595 | -822.361 483.057 |
expression | 25.3246 | 31.866 | 0.795 | 0.436 | -40.944 91.593 |
Omnibus: | 2.024 | Durbin-Watson: | 2.457 |
Prob(Omnibus): | 0.364 | Jarque-Bera (JB): | 1.117 |
Skew: | 0.140 | Prob(JB): | 0.572 |
Kurtosis: | 1.957 | Cond. No. | 439. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.237 | 0.635 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.465 |
Model: | OLS | Adj. R-squared: | 0.319 |
Method: | Least Squares | F-statistic: | 3.183 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0670 |
Time: | 05:17:21 | Log-Likelihood: | -70.613 |
No. Observations: | 15 | AIC: | 149.2 |
Df Residuals: | 11 | BIC: | 152.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 0.6116 | 620.420 | 0.001 | 0.999 | -1364.923 1366.146 |
C(dose)[T.1] | -262.1002 | 915.815 | -0.286 | 0.780 | -2277.795 1753.595 |
expression | 6.7044 | 62.242 | 0.108 | 0.916 | -130.288 143.697 |
expression:C(dose)[T.1] | 29.1719 | 89.209 | 0.327 | 0.750 | -167.176 225.520 |
Omnibus: | 2.349 | Durbin-Watson: | 0.858 |
Prob(Omnibus): | 0.309 | Jarque-Bera (JB): | 1.554 |
Skew: | -0.771 | Prob(JB): | 0.460 |
Kurtosis: | 2.675 | Cond. No. | 1.55e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.459 |
Model: | OLS | Adj. R-squared: | 0.369 |
Method: | Least Squares | F-statistic: | 5.100 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0249 |
Time: | 05:17:21 | Log-Likelihood: | -70.686 |
No. Observations: | 15 | AIC: | 147.4 |
Df Residuals: | 12 | BIC: | 149.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -140.9132 | 427.676 | -0.329 | 0.747 | -1072.739 790.912 |
C(dose)[T.1] | 37.2128 | 29.114 | 1.278 | 0.225 | -26.222 100.647 |
expression | 20.9050 | 42.898 | 0.487 | 0.635 | -72.561 114.371 |
Omnibus: | 2.464 | Durbin-Watson: | 0.820 |
Prob(Omnibus): | 0.292 | Jarque-Bera (JB): | 1.688 |
Skew: | -0.799 | Prob(JB): | 0.430 |
Kurtosis: | 2.618 | Cond. No. | 572. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:17:21 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.386 |
Model: | OLS | Adj. R-squared: | 0.339 |
Method: | Least Squares | F-statistic: | 8.169 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0134 |
Time: | 05:17:21 | Log-Likelihood: | -71.643 |
No. Observations: | 15 | AIC: | 147.3 |
Df Residuals: | 13 | BIC: | 148.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -596.7718 | 241.707 | -2.469 | 0.028 | -1118.947 -74.597 |
expression | 67.2166 | 23.518 | 2.858 | 0.013 | 16.409 118.025 |
Omnibus: | 0.451 | Durbin-Watson: | 1.057 |
Prob(Omnibus): | 0.798 | Jarque-Bera (JB): | 0.549 |
Skew: | -0.254 | Prob(JB): | 0.760 |
Kurtosis: | 2.212 | Cond. No. | 315. |