AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.079 0.311 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.674
Model: OLS Adj. R-squared: 0.623
Method: Least Squares F-statistic: 13.10
Date: Thu, 21 Nov 2024 Prob (F-statistic): 7.20e-05
Time: 04:56:06 Log-Likelihood: -100.21
No. Observations: 23 AIC: 208.4
Df Residuals: 19 BIC: 213.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 146.0406 230.308 0.634 0.534 -336.000 628.081
C(dose)[T.1] 303.2859 378.436 0.801 0.433 -488.790 1095.362
expression -8.5317 21.390 -0.399 0.694 -53.301 36.237
expression:C(dose)[T.1] -21.8318 34.189 -0.639 0.531 -93.390 49.726
Omnibus: 2.862 Durbin-Watson: 1.621
Prob(Omnibus): 0.239 Jarque-Bera (JB): 1.317
Skew: 0.154 Prob(JB): 0.518
Kurtosis: 1.869 Cond. No. 1.20e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.667
Model: OLS Adj. R-squared: 0.634
Method: Least Squares F-statistic: 20.03
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.68e-05
Time: 04:56:06 Log-Likelihood: -100.46
No. Observations: 23 AIC: 206.9
Df Residuals: 20 BIC: 210.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 238.0189 177.026 1.345 0.194 -131.251 607.289
C(dose)[T.1] 61.7507 11.771 5.246 0.000 37.197 86.305
expression -17.0770 16.438 -1.039 0.311 -51.365 17.211
Omnibus: 3.189 Durbin-Watson: 1.671
Prob(Omnibus): 0.203 Jarque-Bera (JB): 1.316
Skew: -0.002 Prob(JB): 0.518
Kurtosis: 1.828 Cond. No. 461.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:56:06 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.209
Model: OLS Adj. R-squared: 0.171
Method: Least Squares F-statistic: 5.544
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0284
Time: 04:56:06 Log-Likelihood: -110.41
No. Observations: 23 AIC: 224.8
Df Residuals: 21 BIC: 227.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -385.0006 197.480 -1.950 0.065 -795.682 25.681
expression 42.2499 17.944 2.354 0.028 4.932 79.567
Omnibus: 1.406 Durbin-Watson: 2.372
Prob(Omnibus): 0.495 Jarque-Bera (JB): 1.246
Skew: 0.436 Prob(JB): 0.536
Kurtosis: 2.265 Cond. No. 341.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.810 0.203 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.617
Model: OLS Adj. R-squared: 0.513
Method: Least Squares F-statistic: 5.908
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0118
Time: 04:56:06 Log-Likelihood: -68.101
No. Observations: 15 AIC: 144.2
Df Residuals: 11 BIC: 147.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 136.5569 145.927 0.936 0.369 -184.627 457.741
C(dose)[T.1] -261.4007 184.489 -1.417 0.184 -667.457 144.656
expression -8.8935 18.730 -0.475 0.644 -50.117 32.330
expression:C(dose)[T.1] 38.7428 23.327 1.661 0.125 -12.600 90.086
Omnibus: 0.245 Durbin-Watson: 1.678
Prob(Omnibus): 0.885 Jarque-Bera (JB): 0.304
Skew: -0.244 Prob(JB): 0.859
Kurtosis: 2.501 Cond. No. 310.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.521
Model: OLS Adj. R-squared: 0.441
Method: Least Squares F-statistic: 6.526
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0121
Time: 04:56:06 Log-Likelihood: -69.779
No. Observations: 15 AIC: 145.6
Df Residuals: 12 BIC: 147.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -57.5802 93.539 -0.616 0.550 -261.384 146.223
C(dose)[T.1] 44.1026 15.153 2.911 0.013 11.088 77.118
expression 16.0827 11.955 1.345 0.203 -9.965 42.130
Omnibus: 0.579 Durbin-Watson: 0.911
Prob(Omnibus): 0.749 Jarque-Bera (JB): 0.628
Skew: -0.324 Prob(JB): 0.731
Kurtosis: 2.236 Cond. No. 104.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:56:06 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.183
Model: OLS Adj. R-squared: 0.120
Method: Least Squares F-statistic: 2.910
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.112
Time: 04:56:06 Log-Likelihood: -73.785
No. Observations: 15 AIC: 151.6
Df Residuals: 13 BIC: 153.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -103.1096 115.726 -0.891 0.389 -353.121 146.902
expression 24.7773 14.526 1.706 0.112 -6.604 56.158
Omnibus: 0.117 Durbin-Watson: 1.735
Prob(Omnibus): 0.943 Jarque-Bera (JB): 0.172
Skew: -0.151 Prob(JB): 0.918
Kurtosis: 2.572 Cond. No. 102.