AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.536 0.473 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.658
Model: OLS Adj. R-squared: 0.604
Method: Least Squares F-statistic: 12.20
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000111
Time: 05:01:44 Log-Likelihood: -100.76
No. Observations: 23 AIC: 209.5
Df Residuals: 19 BIC: 214.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 3.7304 88.190 0.042 0.967 -180.853 188.314
C(dose)[T.1] 68.3431 120.760 0.566 0.578 -184.410 321.096
expression 6.4379 11.220 0.574 0.573 -17.047 29.923
expression:C(dose)[T.1] -1.2602 16.432 -0.077 0.940 -35.654 33.133
Omnibus: 1.119 Durbin-Watson: 1.701
Prob(Omnibus): 0.572 Jarque-Bera (JB): 0.832
Skew: 0.088 Prob(JB): 0.660
Kurtosis: 2.085 Cond. No. 262.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.658
Model: OLS Adj. R-squared: 0.624
Method: Least Squares F-statistic: 19.26
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.18e-05
Time: 05:01:44 Log-Likelihood: -100.76
No. Observations: 23 AIC: 207.5
Df Residuals: 20 BIC: 210.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 8.3371 62.941 0.132 0.896 -122.956 139.630
C(dose)[T.1] 59.1285 11.725 5.043 0.000 34.670 83.587
expression 5.8504 7.991 0.732 0.473 -10.819 22.520
Omnibus: 1.161 Durbin-Watson: 1.696
Prob(Omnibus): 0.560 Jarque-Bera (JB): 0.848
Skew: 0.095 Prob(JB): 0.654
Kurtosis: 2.079 Cond. No. 111.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:01:44 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.224
Model: OLS Adj. R-squared: 0.187
Method: Least Squares F-statistic: 6.049
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0227
Time: 05:01:44 Log-Likelihood: -110.19
No. Observations: 23 AIC: 224.4
Df Residuals: 21 BIC: 226.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 236.9151 64.232 3.688 0.001 103.338 370.492
expression -21.3373 8.676 -2.459 0.023 -39.380 -3.295
Omnibus: 0.223 Durbin-Watson: 2.485
Prob(Omnibus): 0.895 Jarque-Bera (JB): 0.363
Skew: 0.192 Prob(JB): 0.834
Kurtosis: 2.520 Cond. No. 76.1

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.667 0.430 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.493
Model: OLS Adj. R-squared: 0.355
Method: Least Squares F-statistic: 3.568
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0507
Time: 05:01:44 Log-Likelihood: -70.203
No. Observations: 15 AIC: 148.4
Df Residuals: 11 BIC: 151.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 263.0937 216.773 1.214 0.250 -214.020 740.208
C(dose)[T.1] -96.7855 252.645 -0.383 0.709 -652.854 459.283
expression -30.2885 33.509 -0.904 0.385 -104.040 43.463
expression:C(dose)[T.1] 22.5899 39.043 0.579 0.575 -63.343 108.523
Omnibus: 3.149 Durbin-Watson: 0.999
Prob(Omnibus): 0.207 Jarque-Bera (JB): 2.097
Skew: -0.905 Prob(JB): 0.350
Kurtosis: 2.715 Cond. No. 314.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.478
Model: OLS Adj. R-squared: 0.391
Method: Least Squares F-statistic: 5.490
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0203
Time: 05:01:44 Log-Likelihood: -70.427
No. Observations: 15 AIC: 146.9
Df Residuals: 12 BIC: 149.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 155.6015 108.553 1.433 0.177 -80.915 392.118
C(dose)[T.1] 49.1079 15.320 3.205 0.008 15.728 82.488
expression -13.6489 16.714 -0.817 0.430 -50.066 22.768
Omnibus: 2.730 Durbin-Watson: 0.858
Prob(Omnibus): 0.255 Jarque-Bera (JB): 1.870
Skew: -0.845 Prob(JB): 0.393
Kurtosis: 2.631 Cond. No. 94.4

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:01:44 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.031
Model: OLS Adj. R-squared: -0.044
Method: Least Squares F-statistic: 0.4111
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.533
Time: 05:01:44 Log-Likelihood: -75.067
No. Observations: 15 AIC: 154.1
Df Residuals: 13 BIC: 155.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 184.2413 141.613 1.301 0.216 -121.694 490.177
expression -14.0282 21.878 -0.641 0.533 -61.293 33.237
Omnibus: 0.575 Durbin-Watson: 1.694
Prob(Omnibus): 0.750 Jarque-Bera (JB): 0.585
Skew: 0.132 Prob(JB): 0.747
Kurtosis: 2.070 Cond. No. 93.8