AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.048 0.318 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.696
Model: OLS Adj. R-squared: 0.648
Method: Least Squares F-statistic: 14.52
Date: Tue, 28 Jan 2025 Prob (F-statistic): 3.73e-05
Time: 16:56:32 Log-Likelihood: -99.400
No. Observations: 23 AIC: 206.8
Df Residuals: 19 BIC: 211.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -422.0690 277.199 -1.523 0.144 -1002.253 158.115
C(dose)[T.1] 522.5019 340.704 1.534 0.142 -190.600 1235.604
expression 51.0179 29.687 1.719 0.102 -11.117 113.152
expression:C(dose)[T.1] -50.2355 36.818 -1.364 0.188 -127.297 26.826
Omnibus: 0.855 Durbin-Watson: 2.114
Prob(Omnibus): 0.652 Jarque-Bera (JB): 0.820
Skew: -0.251 Prob(JB): 0.664
Kurtosis: 2.222 Cond. No. 1.05e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.667
Model: OLS Adj. R-squared: 0.633
Method: Least Squares F-statistic: 19.99
Date: Tue, 28 Jan 2025 Prob (F-statistic): 1.70e-05
Time: 16:56:32 Log-Likelihood: -100.48
No. Observations: 23 AIC: 207.0
Df Residuals: 20 BIC: 210.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -117.1836 167.529 -0.699 0.492 -466.644 232.277
C(dose)[T.1] 57.8174 9.604 6.020 0.000 37.784 77.851
expression 18.3592 17.934 1.024 0.318 -19.051 55.769
Omnibus: 2.705 Durbin-Watson: 1.883
Prob(Omnibus): 0.259 Jarque-Bera (JB): 1.228
Skew: 0.051 Prob(JB): 0.541
Kurtosis: 1.873 Cond. No. 367.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Tue, 28 Jan 2025 Prob (F-statistic): 3.51e-06
Time: 16:56:32 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.062
Model: OLS Adj. R-squared: 0.018
Method: Least Squares F-statistic: 1.394
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.251
Time: 16:56:32 Log-Likelihood: -112.37
No. Observations: 23 AIC: 228.7
Df Residuals: 21 BIC: 231.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 364.0433 240.945 1.511 0.146 -137.028 865.115
expression -30.8420 26.125 -1.181 0.251 -85.172 23.488
Omnibus: 5.963 Durbin-Watson: 2.380
Prob(Omnibus): 0.051 Jarque-Bera (JB): 1.819
Skew: 0.166 Prob(JB): 0.403
Kurtosis: 1.663 Cond. No. 322.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.716 0.414 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.499
Model: OLS Adj. R-squared: 0.362
Method: Least Squares F-statistic: 3.649
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.0479
Time: 16:56:32 Log-Likelihood: -70.120
No. Observations: 15 AIC: 148.2
Df Residuals: 11 BIC: 151.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 255.2414 179.835 1.419 0.184 -140.573 651.055
C(dose)[T.1] -129.7007 272.511 -0.476 0.643 -729.494 470.093
expression -21.1058 20.168 -1.046 0.318 -65.496 23.284
expression:C(dose)[T.1] 20.0728 31.113 0.645 0.532 -48.406 88.551
Omnibus: 2.710 Durbin-Watson: 1.064
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.723
Skew: -0.822 Prob(JB): 0.422
Kurtosis: 2.762 Cond. No. 397.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.480
Model: OLS Adj. R-squared: 0.393
Method: Least Squares F-statistic: 5.534
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.0198
Time: 16:56:32 Log-Likelihood: -70.399
No. Observations: 15 AIC: 146.8
Df Residuals: 12 BIC: 148.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 180.1835 133.757 1.347 0.203 -111.249 471.616
C(dose)[T.1] 45.8031 15.808 2.898 0.013 11.361 80.245
expression -12.6711 14.979 -0.846 0.414 -45.307 19.965
Omnibus: 4.690 Durbin-Watson: 0.867
Prob(Omnibus): 0.096 Jarque-Bera (JB): 2.800
Skew: -1.056 Prob(JB): 0.247
Kurtosis: 3.134 Cond. No. 156.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.00629
Time: 16:56:32 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.116
Model: OLS Adj. R-squared: 0.048
Method: Least Squares F-statistic: 1.703
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.214
Time: 16:56:32 Log-Likelihood: -74.377
No. Observations: 15 AIC: 152.8
Df Residuals: 13 BIC: 154.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 301.0424 159.184 1.891 0.081 -42.853 644.938
expression -23.6844 18.148 -1.305 0.214 -62.890 15.521
Omnibus: 2.190 Durbin-Watson: 1.767
Prob(Omnibus): 0.334 Jarque-Bera (JB): 1.003
Skew: 0.113 Prob(JB): 0.606
Kurtosis: 1.753 Cond. No. 148.