AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.048 | 0.318 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.696 |
Model: | OLS | Adj. R-squared: | 0.648 |
Method: | Least Squares | F-statistic: | 14.52 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 3.73e-05 |
Time: | 16:56:32 | Log-Likelihood: | -99.400 |
No. Observations: | 23 | AIC: | 206.8 |
Df Residuals: | 19 | BIC: | 211.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -422.0690 | 277.199 | -1.523 | 0.144 | -1002.253 158.115 |
C(dose)[T.1] | 522.5019 | 340.704 | 1.534 | 0.142 | -190.600 1235.604 |
expression | 51.0179 | 29.687 | 1.719 | 0.102 | -11.117 113.152 |
expression:C(dose)[T.1] | -50.2355 | 36.818 | -1.364 | 0.188 | -127.297 26.826 |
Omnibus: | 0.855 | Durbin-Watson: | 2.114 |
Prob(Omnibus): | 0.652 | Jarque-Bera (JB): | 0.820 |
Skew: | -0.251 | Prob(JB): | 0.664 |
Kurtosis: | 2.222 | Cond. No. | 1.05e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.667 |
Model: | OLS | Adj. R-squared: | 0.633 |
Method: | Least Squares | F-statistic: | 19.99 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 1.70e-05 |
Time: | 16:56:32 | Log-Likelihood: | -100.48 |
No. Observations: | 23 | AIC: | 207.0 |
Df Residuals: | 20 | BIC: | 210.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -117.1836 | 167.529 | -0.699 | 0.492 | -466.644 232.277 |
C(dose)[T.1] | 57.8174 | 9.604 | 6.020 | 0.000 | 37.784 77.851 |
expression | 18.3592 | 17.934 | 1.024 | 0.318 | -19.051 55.769 |
Omnibus: | 2.705 | Durbin-Watson: | 1.883 |
Prob(Omnibus): | 0.259 | Jarque-Bera (JB): | 1.228 |
Skew: | 0.051 | Prob(JB): | 0.541 |
Kurtosis: | 1.873 | Cond. No. | 367. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 16:56:32 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.062 |
Model: | OLS | Adj. R-squared: | 0.018 |
Method: | Least Squares | F-statistic: | 1.394 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.251 |
Time: | 16:56:32 | Log-Likelihood: | -112.37 |
No. Observations: | 23 | AIC: | 228.7 |
Df Residuals: | 21 | BIC: | 231.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 364.0433 | 240.945 | 1.511 | 0.146 | -137.028 865.115 |
expression | -30.8420 | 26.125 | -1.181 | 0.251 | -85.172 23.488 |
Omnibus: | 5.963 | Durbin-Watson: | 2.380 |
Prob(Omnibus): | 0.051 | Jarque-Bera (JB): | 1.819 |
Skew: | 0.166 | Prob(JB): | 0.403 |
Kurtosis: | 1.663 | Cond. No. | 322. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.716 | 0.414 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.499 |
Model: | OLS | Adj. R-squared: | 0.362 |
Method: | Least Squares | F-statistic: | 3.649 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.0479 |
Time: | 16:56:32 | Log-Likelihood: | -70.120 |
No. Observations: | 15 | AIC: | 148.2 |
Df Residuals: | 11 | BIC: | 151.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 255.2414 | 179.835 | 1.419 | 0.184 | -140.573 651.055 |
C(dose)[T.1] | -129.7007 | 272.511 | -0.476 | 0.643 | -729.494 470.093 |
expression | -21.1058 | 20.168 | -1.046 | 0.318 | -65.496 23.284 |
expression:C(dose)[T.1] | 20.0728 | 31.113 | 0.645 | 0.532 | -48.406 88.551 |
Omnibus: | 2.710 | Durbin-Watson: | 1.064 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.723 |
Skew: | -0.822 | Prob(JB): | 0.422 |
Kurtosis: | 2.762 | Cond. No. | 397. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.480 |
Model: | OLS | Adj. R-squared: | 0.393 |
Method: | Least Squares | F-statistic: | 5.534 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.0198 |
Time: | 16:56:32 | Log-Likelihood: | -70.399 |
No. Observations: | 15 | AIC: | 146.8 |
Df Residuals: | 12 | BIC: | 148.9 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 180.1835 | 133.757 | 1.347 | 0.203 | -111.249 471.616 |
C(dose)[T.1] | 45.8031 | 15.808 | 2.898 | 0.013 | 11.361 80.245 |
expression | -12.6711 | 14.979 | -0.846 | 0.414 | -45.307 19.965 |
Omnibus: | 4.690 | Durbin-Watson: | 0.867 |
Prob(Omnibus): | 0.096 | Jarque-Bera (JB): | 2.800 |
Skew: | -1.056 | Prob(JB): | 0.247 |
Kurtosis: | 3.134 | Cond. No. | 156. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.00629 |
Time: | 16:56:32 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.116 |
Model: | OLS | Adj. R-squared: | 0.048 |
Method: | Least Squares | F-statistic: | 1.703 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.214 |
Time: | 16:56:32 | Log-Likelihood: | -74.377 |
No. Observations: | 15 | AIC: | 152.8 |
Df Residuals: | 13 | BIC: | 154.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 301.0424 | 159.184 | 1.891 | 0.081 | -42.853 644.938 |
expression | -23.6844 | 18.148 | -1.305 | 0.214 | -62.890 15.521 |
Omnibus: | 2.190 | Durbin-Watson: | 1.767 |
Prob(Omnibus): | 0.334 | Jarque-Bera (JB): | 1.003 |
Skew: | 0.113 | Prob(JB): | 0.606 |
Kurtosis: | 1.753 | Cond. No. | 148. |