AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.044 0.836 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.663
Model: OLS Adj. R-squared: 0.610
Method: Least Squares F-statistic: 12.45
Date: Thu, 21 Nov 2024 Prob (F-statistic): 9.84e-05
Time: 04:13:18 Log-Likelihood: -100.60
No. Observations: 23 AIC: 209.2
Df Residuals: 19 BIC: 213.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -188.8829 363.592 -0.519 0.609 -949.890 572.124
C(dose)[T.1] 581.1284 614.630 0.945 0.356 -705.306 1867.563
expression 23.8321 35.641 0.669 0.512 -50.765 98.429
expression:C(dose)[T.1] -52.3515 61.107 -0.857 0.402 -180.250 75.547
Omnibus: 0.152 Durbin-Watson: 1.876
Prob(Omnibus): 0.927 Jarque-Bera (JB): 0.356
Skew: -0.111 Prob(JB): 0.837
Kurtosis: 2.432 Cond. No. 1.72e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.650
Model: OLS Adj. R-squared: 0.615
Method: Least Squares F-statistic: 18.56
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.77e-05
Time: 04:13:18 Log-Likelihood: -101.04
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -7.2297 293.394 -0.025 0.981 -619.239 604.780
C(dose)[T.1] 54.6472 10.764 5.077 0.000 32.194 77.101
expression 6.0232 28.757 0.209 0.836 -53.964 66.010
Omnibus: 0.390 Durbin-Watson: 1.884
Prob(Omnibus): 0.823 Jarque-Bera (JB): 0.525
Skew: 0.073 Prob(JB): 0.769
Kurtosis: 2.275 Cond. No. 685.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:13:18 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.199
Model: OLS Adj. R-squared: 0.160
Method: Least Squares F-statistic: 5.203
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0331
Time: 04:13:18 Log-Likelihood: -110.56
No. Observations: 23 AIC: 225.1
Df Residuals: 21 BIC: 227.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 875.4397 348.910 2.509 0.020 149.841 1601.038
expression -78.8145 34.553 -2.281 0.033 -150.671 -6.958
Omnibus: 3.483 Durbin-Watson: 2.410
Prob(Omnibus): 0.175 Jarque-Bera (JB): 1.369
Skew: 0.001 Prob(JB): 0.504
Kurtosis: 1.805 Cond. No. 551.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
2.512 0.139 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.549
Model: OLS Adj. R-squared: 0.426
Method: Least Squares F-statistic: 4.470
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0277
Time: 04:13:18 Log-Likelihood: -69.321
No. Observations: 15 AIC: 146.6
Df Residuals: 11 BIC: 149.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 384.4629 283.995 1.354 0.203 -240.606 1009.532
C(dose)[T.1] 249.0889 549.501 0.453 0.659 -960.355 1458.533
expression -36.0404 32.261 -1.117 0.288 -107.046 34.965
expression:C(dose)[T.1] -22.0835 61.946 -0.356 0.728 -158.426 114.259
Omnibus: 1.817 Durbin-Watson: 0.993
Prob(Omnibus): 0.403 Jarque-Bera (JB): 1.243
Skew: -0.473 Prob(JB): 0.537
Kurtosis: 1.953 Cond. No. 806.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.544
Model: OLS Adj. R-squared: 0.468
Method: Least Squares F-statistic: 7.163
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00897
Time: 04:13:18 Log-Likelihood: -69.408
No. Observations: 15 AIC: 144.8
Df Residuals: 12 BIC: 146.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 437.1504 233.522 1.872 0.086 -71.650 945.950
C(dose)[T.1] 53.2689 14.542 3.663 0.003 21.585 84.953
expression -42.0299 26.520 -1.585 0.139 -99.812 15.752
Omnibus: 1.951 Durbin-Watson: 1.099
Prob(Omnibus): 0.377 Jarque-Bera (JB): 1.330
Skew: -0.508 Prob(JB): 0.514
Kurtosis: 1.953 Cond. No. 294.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:13:18 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.034
Model: OLS Adj. R-squared: -0.040
Method: Least Squares F-statistic: 0.4640
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.508
Time: 04:13:18 Log-Likelihood: -75.037
No. Observations: 15 AIC: 154.1
Df Residuals: 13 BIC: 155.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 313.6607 323.118 0.971 0.349 -384.393 1011.714
expression -24.8628 36.500 -0.681 0.508 -103.716 53.991
Omnibus: 1.943 Durbin-Watson: 1.803
Prob(Omnibus): 0.379 Jarque-Bera (JB): 1.019
Skew: 0.230 Prob(JB): 0.601
Kurtosis: 1.809 Cond. No. 290.