AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.044 | 0.836 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.663 |
Model: | OLS | Adj. R-squared: | 0.610 |
Method: | Least Squares | F-statistic: | 12.45 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 9.84e-05 |
Time: | 04:13:18 | Log-Likelihood: | -100.60 |
No. Observations: | 23 | AIC: | 209.2 |
Df Residuals: | 19 | BIC: | 213.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -188.8829 | 363.592 | -0.519 | 0.609 | -949.890 572.124 |
C(dose)[T.1] | 581.1284 | 614.630 | 0.945 | 0.356 | -705.306 1867.563 |
expression | 23.8321 | 35.641 | 0.669 | 0.512 | -50.765 98.429 |
expression:C(dose)[T.1] | -52.3515 | 61.107 | -0.857 | 0.402 | -180.250 75.547 |
Omnibus: | 0.152 | Durbin-Watson: | 1.876 |
Prob(Omnibus): | 0.927 | Jarque-Bera (JB): | 0.356 |
Skew: | -0.111 | Prob(JB): | 0.837 |
Kurtosis: | 2.432 | Cond. No. | 1.72e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.615 |
Method: | Least Squares | F-statistic: | 18.56 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.77e-05 |
Time: | 04:13:18 | Log-Likelihood: | -101.04 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -7.2297 | 293.394 | -0.025 | 0.981 | -619.239 604.780 |
C(dose)[T.1] | 54.6472 | 10.764 | 5.077 | 0.000 | 32.194 77.101 |
expression | 6.0232 | 28.757 | 0.209 | 0.836 | -53.964 66.010 |
Omnibus: | 0.390 | Durbin-Watson: | 1.884 |
Prob(Omnibus): | 0.823 | Jarque-Bera (JB): | 0.525 |
Skew: | 0.073 | Prob(JB): | 0.769 |
Kurtosis: | 2.275 | Cond. No. | 685. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:13:18 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.199 |
Model: | OLS | Adj. R-squared: | 0.160 |
Method: | Least Squares | F-statistic: | 5.203 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0331 |
Time: | 04:13:18 | Log-Likelihood: | -110.56 |
No. Observations: | 23 | AIC: | 225.1 |
Df Residuals: | 21 | BIC: | 227.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 875.4397 | 348.910 | 2.509 | 0.020 | 149.841 1601.038 |
expression | -78.8145 | 34.553 | -2.281 | 0.033 | -150.671 -6.958 |
Omnibus: | 3.483 | Durbin-Watson: | 2.410 |
Prob(Omnibus): | 0.175 | Jarque-Bera (JB): | 1.369 |
Skew: | 0.001 | Prob(JB): | 0.504 |
Kurtosis: | 1.805 | Cond. No. | 551. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.512 | 0.139 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.549 |
Model: | OLS | Adj. R-squared: | 0.426 |
Method: | Least Squares | F-statistic: | 4.470 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0277 |
Time: | 04:13:18 | Log-Likelihood: | -69.321 |
No. Observations: | 15 | AIC: | 146.6 |
Df Residuals: | 11 | BIC: | 149.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 384.4629 | 283.995 | 1.354 | 0.203 | -240.606 1009.532 |
C(dose)[T.1] | 249.0889 | 549.501 | 0.453 | 0.659 | -960.355 1458.533 |
expression | -36.0404 | 32.261 | -1.117 | 0.288 | -107.046 34.965 |
expression:C(dose)[T.1] | -22.0835 | 61.946 | -0.356 | 0.728 | -158.426 114.259 |
Omnibus: | 1.817 | Durbin-Watson: | 0.993 |
Prob(Omnibus): | 0.403 | Jarque-Bera (JB): | 1.243 |
Skew: | -0.473 | Prob(JB): | 0.537 |
Kurtosis: | 1.953 | Cond. No. | 806. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.544 |
Model: | OLS | Adj. R-squared: | 0.468 |
Method: | Least Squares | F-statistic: | 7.163 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00897 |
Time: | 04:13:18 | Log-Likelihood: | -69.408 |
No. Observations: | 15 | AIC: | 144.8 |
Df Residuals: | 12 | BIC: | 146.9 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 437.1504 | 233.522 | 1.872 | 0.086 | -71.650 945.950 |
C(dose)[T.1] | 53.2689 | 14.542 | 3.663 | 0.003 | 21.585 84.953 |
expression | -42.0299 | 26.520 | -1.585 | 0.139 | -99.812 15.752 |
Omnibus: | 1.951 | Durbin-Watson: | 1.099 |
Prob(Omnibus): | 0.377 | Jarque-Bera (JB): | 1.330 |
Skew: | -0.508 | Prob(JB): | 0.514 |
Kurtosis: | 1.953 | Cond. No. | 294. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:13:18 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.034 |
Model: | OLS | Adj. R-squared: | -0.040 |
Method: | Least Squares | F-statistic: | 0.4640 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.508 |
Time: | 04:13:18 | Log-Likelihood: | -75.037 |
No. Observations: | 15 | AIC: | 154.1 |
Df Residuals: | 13 | BIC: | 155.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 313.6607 | 323.118 | 0.971 | 0.349 | -384.393 1011.714 |
expression | -24.8628 | 36.500 | -0.681 | 0.508 | -103.716 53.991 |
Omnibus: | 1.943 | Durbin-Watson: | 1.803 |
Prob(Omnibus): | 0.379 | Jarque-Bera (JB): | 1.019 |
Skew: | 0.230 | Prob(JB): | 0.601 |
Kurtosis: | 1.809 | Cond. No. | 290. |