AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.517 0.481 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.678
Model: OLS Adj. R-squared: 0.627
Method: Least Squares F-statistic: 13.31
Date: Tue, 28 Jan 2025 Prob (F-statistic): 6.50e-05
Time: 19:26:48 Log-Likelihood: -100.09
No. Observations: 23 AIC: 208.2
Df Residuals: 19 BIC: 212.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -94.4388 120.788 -0.782 0.444 -347.250 158.373
C(dose)[T.1] 268.8691 205.608 1.308 0.207 -161.474 699.212
expression 19.5740 15.886 1.232 0.233 -13.676 52.824
expression:C(dose)[T.1] -27.7265 25.751 -1.077 0.295 -81.624 26.171
Omnibus: 0.205 Durbin-Watson: 2.049
Prob(Omnibus): 0.902 Jarque-Bera (JB): 0.410
Skew: -0.024 Prob(JB): 0.815
Kurtosis: 2.348 Cond. No. 473.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.658
Model: OLS Adj. R-squared: 0.624
Method: Least Squares F-statistic: 19.23
Date: Tue, 28 Jan 2025 Prob (F-statistic): 2.20e-05
Time: 19:26:48 Log-Likelihood: -100.77
No. Observations: 23 AIC: 207.5
Df Residuals: 20 BIC: 210.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -14.3037 95.513 -0.150 0.882 -213.540 184.933
C(dose)[T.1] 47.8329 11.560 4.138 0.001 23.720 71.946
expression 9.0217 12.553 0.719 0.481 -17.162 35.206
Omnibus: 0.210 Durbin-Watson: 1.956
Prob(Omnibus): 0.900 Jarque-Bera (JB): 0.413
Skew: -0.013 Prob(JB): 0.814
Kurtosis: 2.344 Cond. No. 178.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Tue, 28 Jan 2025 Prob (F-statistic): 3.51e-06
Time: 19:26:48 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.365
Model: OLS Adj. R-squared: 0.335
Method: Least Squares F-statistic: 12.07
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.00227
Time: 19:26:48 Log-Likelihood: -107.88
No. Observations: 23 AIC: 219.8
Df Residuals: 21 BIC: 222.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -262.7950 98.750 -2.661 0.015 -468.158 -57.432
expression 43.4336 12.501 3.474 0.002 17.436 69.431
Omnibus: 2.449 Durbin-Watson: 2.086
Prob(Omnibus): 0.294 Jarque-Bera (JB): 1.612
Skew: 0.648 Prob(JB): 0.447
Kurtosis: 2.973 Cond. No. 138.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.433 0.523 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.548
Model: OLS Adj. R-squared: 0.424
Method: Least Squares F-statistic: 4.438
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.0282
Time: 19:26:48 Log-Likelihood: -69.351
No. Observations: 15 AIC: 146.7
Df Residuals: 11 BIC: 149.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 90.6210 75.692 1.197 0.256 -75.975 257.217
C(dose)[T.1] -113.0852 119.249 -0.948 0.363 -375.550 149.380
expression -4.0420 13.055 -0.310 0.763 -32.775 24.691
expression:C(dose)[T.1] 29.7047 21.353 1.391 0.192 -17.293 76.703
Omnibus: 0.851 Durbin-Watson: 1.198
Prob(Omnibus): 0.654 Jarque-Bera (JB): 0.420
Skew: -0.398 Prob(JB): 0.811
Kurtosis: 2.803 Cond. No. 117.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.468
Model: OLS Adj. R-squared: 0.379
Method: Least Squares F-statistic: 5.278
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.0227
Time: 19:26:48 Log-Likelihood: -70.567
No. Observations: 15 AIC: 147.1
Df Residuals: 12 BIC: 149.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 26.9140 62.570 0.430 0.675 -109.415 163.243
C(dose)[T.1] 51.4412 15.834 3.249 0.007 16.941 85.941
expression 7.0610 10.726 0.658 0.523 -16.309 30.431
Omnibus: 1.756 Durbin-Watson: 0.773
Prob(Omnibus): 0.416 Jarque-Bera (JB): 1.370
Skew: -0.666 Prob(JB): 0.504
Kurtosis: 2.354 Cond. No. 47.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.00629
Time: 19:26:48 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.077
Method: Least Squares F-statistic: 0.001030
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.975
Time: 19:26:48 Log-Likelihood: -75.299
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 96.1319 77.490 1.241 0.237 -71.275 263.539
expression -0.4427 13.796 -0.032 0.975 -30.248 29.362
Omnibus: 0.586 Durbin-Watson: 1.619
Prob(Omnibus): 0.746 Jarque-Bera (JB): 0.575
Skew: 0.047 Prob(JB): 0.750
Kurtosis: 2.046 Cond. No. 44.2