AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.089 | 0.769 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.705 |
Model: | OLS | Adj. R-squared: | 0.658 |
Method: | Least Squares | F-statistic: | 15.13 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.84e-05 |
Time: | 06:20:40 | Log-Likelihood: | -99.066 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 19 | BIC: | 210.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 125.1799 | 75.341 | 1.662 | 0.113 | -32.511 282.870 |
C(dose)[T.1] | -380.1824 | 232.860 | -1.633 | 0.119 | -867.564 107.200 |
expression | -7.5603 | 8.003 | -0.945 | 0.357 | -24.310 9.190 |
expression:C(dose)[T.1] | 43.2359 | 23.104 | 1.871 | 0.077 | -5.121 91.593 |
Omnibus: | 4.830 | Durbin-Watson: | 1.918 |
Prob(Omnibus): | 0.089 | Jarque-Bera (JB): | 1.582 |
Skew: | -0.003 | Prob(JB): | 0.453 |
Kurtosis: | 1.715 | Cond. No. | 647. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.651 |
Model: | OLS | Adj. R-squared: | 0.616 |
Method: | Least Squares | F-statistic: | 18.62 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.71e-05 |
Time: | 06:20:40 | Log-Likelihood: | -101.01 |
No. Observations: | 23 | AIC: | 208.0 |
Df Residuals: | 20 | BIC: | 211.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 76.4838 | 74.997 | 1.020 | 0.320 | -79.957 232.925 |
C(dose)[T.1] | 55.1759 | 10.707 | 5.153 | 0.000 | 32.841 77.511 |
expression | -2.3729 | 7.963 | -0.298 | 0.769 | -18.984 14.238 |
Omnibus: | 0.326 | Durbin-Watson: | 1.943 |
Prob(Omnibus): | 0.849 | Jarque-Bera (JB): | 0.486 |
Skew: | 0.004 | Prob(JB): | 0.784 |
Kurtosis: | 2.288 | Cond. No. | 170. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 06:20:40 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.187 |
Model: | OLS | Adj. R-squared: | 0.148 |
Method: | Least Squares | F-statistic: | 4.821 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0395 |
Time: | 06:20:40 | Log-Likelihood: | -110.73 |
No. Observations: | 23 | AIC: | 225.5 |
Df Residuals: | 21 | BIC: | 227.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -127.8878 | 94.773 | -1.349 | 0.192 | -324.978 69.203 |
expression | 21.2753 | 9.689 | 2.196 | 0.039 | 1.125 41.425 |
Omnibus: | 3.582 | Durbin-Watson: | 2.123 |
Prob(Omnibus): | 0.167 | Jarque-Bera (JB): | 1.406 |
Skew: | 0.082 | Prob(JB): | 0.495 |
Kurtosis: | 1.800 | Cond. No. | 144. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.895 | 0.115 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.556 |
Model: | OLS | Adj. R-squared: | 0.435 |
Method: | Least Squares | F-statistic: | 4.590 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0256 |
Time: | 06:20:40 | Log-Likelihood: | -69.212 |
No. Observations: | 15 | AIC: | 146.4 |
Df Residuals: | 11 | BIC: | 149.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 320.8039 | 293.712 | 1.092 | 0.298 | -325.652 967.260 |
C(dose)[T.1] | 44.1255 | 344.498 | 0.128 | 0.900 | -714.110 802.361 |
expression | -28.8390 | 33.408 | -0.863 | 0.406 | -102.369 44.691 |
expression:C(dose)[T.1] | 0.1943 | 39.320 | 0.005 | 0.996 | -86.349 86.737 |
Omnibus: | 2.061 | Durbin-Watson: | 0.876 |
Prob(Omnibus): | 0.357 | Jarque-Bera (JB): | 1.585 |
Skew: | -0.672 | Prob(JB): | 0.453 |
Kurtosis: | 2.145 | Cond. No. | 607. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.556 |
Model: | OLS | Adj. R-squared: | 0.482 |
Method: | Least Squares | F-statistic: | 7.510 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00767 |
Time: | 06:20:40 | Log-Likelihood: | -69.212 |
No. Observations: | 15 | AIC: | 144.4 |
Df Residuals: | 12 | BIC: | 146.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 319.5715 | 148.561 | 2.151 | 0.053 | -4.114 643.257 |
C(dose)[T.1] | 45.8265 | 14.266 | 3.212 | 0.007 | 14.744 76.909 |
expression | -28.6988 | 16.868 | -1.701 | 0.115 | -65.452 8.054 |
Omnibus: | 2.058 | Durbin-Watson: | 0.875 |
Prob(Omnibus): | 0.357 | Jarque-Bera (JB): | 1.583 |
Skew: | -0.671 | Prob(JB): | 0.453 |
Kurtosis: | 2.146 | Cond. No. | 187. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 06:20:40 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.174 |
Model: | OLS | Adj. R-squared: | 0.110 |
Method: | Least Squares | F-statistic: | 2.739 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.122 |
Time: | 06:20:40 | Log-Likelihood: | -73.866 |
No. Observations: | 15 | AIC: | 151.7 |
Df Residuals: | 13 | BIC: | 153.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 409.6418 | 191.158 | 2.143 | 0.052 | -3.330 822.614 |
expression | -36.2223 | 21.888 | -1.655 | 0.122 | -83.509 11.064 |
Omnibus: | 0.107 | Durbin-Watson: | 1.804 |
Prob(Omnibus): | 0.948 | Jarque-Bera (JB): | 0.269 |
Skew: | 0.157 | Prob(JB): | 0.874 |
Kurtosis: | 2.425 | Cond. No. | 183. |