AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.259 | 0.275 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.683 |
Model: | OLS | Adj. R-squared: | 0.633 |
Method: | Least Squares | F-statistic: | 13.65 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 5.54e-05 |
Time: | 03:46:35 | Log-Likelihood: | -99.889 |
No. Observations: | 23 | AIC: | 207.8 |
Df Residuals: | 19 | BIC: | 212.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -29.3209 | 58.998 | -0.497 | 0.625 | -152.805 94.163 |
C(dose)[T.1] | 128.2150 | 89.742 | 1.429 | 0.169 | -59.618 316.048 |
expression | 15.2964 | 10.750 | 1.423 | 0.171 | -7.203 37.796 |
expression:C(dose)[T.1] | -13.8547 | 15.540 | -0.892 | 0.384 | -46.379 18.670 |
Omnibus: | 0.110 | Durbin-Watson: | 2.129 |
Prob(Omnibus): | 0.946 | Jarque-Bera (JB): | 0.335 |
Skew: | -0.014 | Prob(JB): | 0.846 |
Kurtosis: | 2.410 | Cond. No. | 160. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.670 |
Model: | OLS | Adj. R-squared: | 0.637 |
Method: | Least Squares | F-statistic: | 20.29 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.54e-05 |
Time: | 03:46:35 | Log-Likelihood: | -100.36 |
No. Observations: | 23 | AIC: | 206.7 |
Df Residuals: | 20 | BIC: | 210.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 6.8833 | 42.580 | 0.162 | 0.873 | -81.937 95.703 |
C(dose)[T.1] | 48.6546 | 9.474 | 5.135 | 0.000 | 28.891 68.418 |
expression | 8.6664 | 7.723 | 1.122 | 0.275 | -7.443 24.776 |
Omnibus: | 0.046 | Durbin-Watson: | 2.110 |
Prob(Omnibus): | 0.977 | Jarque-Bera (JB): | 0.122 |
Skew: | 0.074 | Prob(JB): | 0.941 |
Kurtosis: | 2.675 | Cond. No. | 59.8 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:46:35 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.235 |
Model: | OLS | Adj. R-squared: | 0.198 |
Method: | Least Squares | F-statistic: | 6.433 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0192 |
Time: | 03:46:35 | Log-Likelihood: | -110.03 |
No. Observations: | 23 | AIC: | 224.1 |
Df Residuals: | 21 | BIC: | 226.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -69.7374 | 59.262 | -1.177 | 0.252 | -192.980 53.505 |
expression | 26.1324 | 10.303 | 2.536 | 0.019 | 4.706 47.559 |
Omnibus: | 1.510 | Durbin-Watson: | 2.505 |
Prob(Omnibus): | 0.470 | Jarque-Bera (JB): | 1.208 |
Skew: | 0.534 | Prob(JB): | 0.547 |
Kurtosis: | 2.652 | Cond. No. | 55.6 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.002 | 0.968 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.512 |
Model: | OLS | Adj. R-squared: | 0.379 |
Method: | Least Squares | F-statistic: | 3.846 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0418 |
Time: | 03:46:35 | Log-Likelihood: | -69.920 |
No. Observations: | 15 | AIC: | 147.8 |
Df Residuals: | 11 | BIC: | 150.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 212.4071 | 170.548 | 1.245 | 0.239 | -162.967 587.781 |
C(dose)[T.1] | -225.8839 | 231.194 | -0.977 | 0.350 | -734.739 282.971 |
expression | -22.0256 | 25.853 | -0.852 | 0.412 | -78.928 34.877 |
expression:C(dose)[T.1] | 41.7540 | 35.015 | 1.192 | 0.258 | -35.314 118.822 |
Omnibus: | 1.561 | Durbin-Watson: | 1.239 |
Prob(Omnibus): | 0.458 | Jarque-Bera (JB): | 0.988 |
Skew: | -0.610 | Prob(JB): | 0.610 |
Kurtosis: | 2.695 | Cond. No. | 274. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.357 |
Method: | Least Squares | F-statistic: | 4.886 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0280 |
Time: | 03:46:35 | Log-Likelihood: | -70.832 |
No. Observations: | 15 | AIC: | 147.7 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 62.5779 | 117.333 | 0.533 | 0.604 | -193.069 318.225 |
C(dose)[T.1] | 49.1873 | 15.740 | 3.125 | 0.009 | 14.893 83.482 |
expression | 0.7369 | 17.740 | 0.042 | 0.968 | -37.915 39.389 |
Omnibus: | 2.663 | Durbin-Watson: | 0.816 |
Prob(Omnibus): | 0.264 | Jarque-Bera (JB): | 1.835 |
Skew: | -0.835 | Prob(JB): | 0.400 |
Kurtosis: | 2.616 | Cond. No. | 101. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:46:35 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.000 |
Model: | OLS | Adj. R-squared: | -0.077 |
Method: | Least Squares | F-statistic: | 0.004335 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.949 |
Time: | 03:46:35 | Log-Likelihood: | -75.298 |
No. Observations: | 15 | AIC: | 154.6 |
Df Residuals: | 13 | BIC: | 156.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 83.7098 | 151.569 | 0.552 | 0.590 | -243.735 411.155 |
expression | 1.5112 | 22.952 | 0.066 | 0.949 | -48.074 51.096 |
Omnibus: | 0.529 | Durbin-Watson: | 1.630 |
Prob(Omnibus): | 0.768 | Jarque-Bera (JB): | 0.552 |
Skew: | 0.034 | Prob(JB): | 0.759 |
Kurtosis: | 2.063 | Cond. No. | 101. |