AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.049 0.826 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.667
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 12.67
Date: Thu, 21 Nov 2024 Prob (F-statistic): 8.85e-05
Time: 04:42:42 Log-Likelihood: -100.47
No. Observations: 23 AIC: 208.9
Df Residuals: 19 BIC: 213.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 116.8546 72.495 1.612 0.123 -34.880 268.589
C(dose)[T.1] -40.6910 95.790 -0.425 0.676 -241.182 159.800
expression -7.7389 8.924 -0.867 0.397 -26.417 10.940
expression:C(dose)[T.1] 11.9248 12.193 0.978 0.340 -13.596 37.446
Omnibus: 0.084 Durbin-Watson: 2.050
Prob(Omnibus): 0.959 Jarque-Bera (JB): 0.294
Skew: -0.080 Prob(JB): 0.863
Kurtosis: 2.470 Cond. No. 230.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.650
Model: OLS Adj. R-squared: 0.615
Method: Least Squares F-statistic: 18.57
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.76e-05
Time: 04:42:42 Log-Likelihood: -101.03
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 65.1453 49.544 1.315 0.203 -38.202 168.493
C(dose)[T.1] 52.5293 9.482 5.540 0.000 32.750 72.309
expression -1.3511 6.074 -0.222 0.826 -14.022 11.320
Omnibus: 0.411 Durbin-Watson: 1.920
Prob(Omnibus): 0.814 Jarque-Bera (JB): 0.534
Skew: 0.056 Prob(JB): 0.766
Kurtosis: 2.262 Cond. No. 90.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:42:42 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.113
Model: OLS Adj. R-squared: 0.070
Method: Least Squares F-statistic: 2.669
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.117
Time: 04:42:42 Log-Likelihood: -111.73
No. Observations: 23 AIC: 227.5
Df Residuals: 21 BIC: 229.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 190.9246 68.415 2.791 0.011 48.648 333.201
expression -14.2409 8.718 -1.634 0.117 -32.370 3.888
Omnibus: 1.590 Durbin-Watson: 2.349
Prob(Omnibus): 0.452 Jarque-Bera (JB): 1.412
Skew: 0.514 Prob(JB): 0.494
Kurtosis: 2.353 Cond. No. 80.3

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
8.325 0.014 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.685
Model: OLS Adj. R-squared: 0.599
Method: Least Squares F-statistic: 7.971
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00421
Time: 04:42:42 Log-Likelihood: -66.638
No. Observations: 15 AIC: 141.3
Df Residuals: 11 BIC: 144.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 385.6210 178.766 2.157 0.054 -7.840 779.082
C(dose)[T.1] -61.6861 201.267 -0.306 0.765 -504.673 381.301
expression -50.7722 28.488 -1.782 0.102 -113.474 11.929
expression:C(dose)[T.1] 19.1214 31.768 0.602 0.559 -50.800 89.042
Omnibus: 2.014 Durbin-Watson: 1.269
Prob(Omnibus): 0.365 Jarque-Bera (JB): 1.526
Skew: -0.722 Prob(JB): 0.466
Kurtosis: 2.404 Cond. No. 327.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.675
Model: OLS Adj. R-squared: 0.620
Method: Least Squares F-statistic: 12.44
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00119
Time: 04:42:42 Log-Likelihood: -66.881
No. Observations: 15 AIC: 139.8
Df Residuals: 12 BIC: 141.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 289.2552 77.387 3.738 0.003 120.644 457.867
C(dose)[T.1] 59.2077 12.582 4.706 0.001 31.794 86.621
expression -35.3957 12.268 -2.885 0.014 -62.124 -8.667
Omnibus: 2.637 Durbin-Watson: 1.056
Prob(Omnibus): 0.268 Jarque-Bera (JB): 1.855
Skew: -0.834 Prob(JB): 0.395
Kurtosis: 2.571 Cond. No. 84.9

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:42:42 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.074
Model: OLS Adj. R-squared: 0.003
Method: Least Squares F-statistic: 1.039
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.327
Time: 04:42:42 Log-Likelihood: -74.724
No. Observations: 15 AIC: 153.4
Df Residuals: 13 BIC: 154.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 218.6603 123.038 1.777 0.099 -47.147 484.467
expression -19.4758 19.110 -1.019 0.327 -60.761 21.810
Omnibus: 1.769 Durbin-Watson: 1.892
Prob(Omnibus): 0.413 Jarque-Bera (JB): 0.960
Skew: 0.200 Prob(JB): 0.619
Kurtosis: 1.827 Cond. No. 83.0