AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.787 0.386 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.675
Model: OLS Adj. R-squared: 0.623
Method: Least Squares F-statistic: 13.14
Date: Thu, 21 Nov 2024 Prob (F-statistic): 7.03e-05
Time: 04:45:50 Log-Likelihood: -100.19
No. Observations: 23 AIC: 208.4
Df Residuals: 19 BIC: 212.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 8.0091 242.513 0.033 0.974 -499.577 515.596
C(dose)[T.1] 306.2363 296.521 1.033 0.315 -314.389 926.861
expression 5.7919 30.394 0.191 0.851 -57.824 69.408
expression:C(dose)[T.1] -31.7777 37.193 -0.854 0.404 -109.623 46.068
Omnibus: 2.066 Durbin-Watson: 1.862
Prob(Omnibus): 0.356 Jarque-Bera (JB): 1.120
Skew: 0.128 Prob(JB): 0.571
Kurtosis: 1.950 Cond. No. 776.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.662
Model: OLS Adj. R-squared: 0.629
Method: Least Squares F-statistic: 19.62
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.93e-05
Time: 04:45:50 Log-Likelihood: -100.62
No. Observations: 23 AIC: 207.2
Df Residuals: 20 BIC: 210.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 177.2872 138.909 1.276 0.216 -112.471 467.046
C(dose)[T.1] 52.9957 8.611 6.154 0.000 35.034 70.958
expression -15.4302 17.399 -0.887 0.386 -51.723 20.863
Omnibus: 1.489 Durbin-Watson: 1.942
Prob(Omnibus): 0.475 Jarque-Bera (JB): 0.941
Skew: 0.073 Prob(JB): 0.625
Kurtosis: 2.020 Cond. No. 262.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:45:50 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.023
Model: OLS Adj. R-squared: -0.024
Method: Least Squares F-statistic: 0.4909
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.491
Time: 04:45:50 Log-Likelihood: -112.84
No. Observations: 23 AIC: 229.7
Df Residuals: 21 BIC: 231.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 240.7643 229.971 1.047 0.307 -237.487 719.016
expression -20.2170 28.856 -0.701 0.491 -80.226 39.791
Omnibus: 2.951 Durbin-Watson: 2.437
Prob(Omnibus): 0.229 Jarque-Bera (JB): 1.384
Skew: 0.204 Prob(JB): 0.501
Kurtosis: 1.870 Cond. No. 261.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.895 0.363 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.489
Model: OLS Adj. R-squared: 0.350
Method: Least Squares F-statistic: 3.508
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0529
Time: 04:45:50 Log-Likelihood: -70.265
No. Observations: 15 AIC: 148.5
Df Residuals: 11 BIC: 151.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -239.8582 822.582 -0.292 0.776 -2050.350 1570.633
C(dose)[T.1] -158.6821 1021.172 -0.155 0.879 -2406.266 2088.902
expression 35.5001 95.022 0.374 0.716 -173.641 244.641
expression:C(dose)[T.1] 23.8935 117.874 0.203 0.843 -235.546 283.333
Omnibus: 2.121 Durbin-Watson: 0.787
Prob(Omnibus): 0.346 Jarque-Bera (JB): 1.646
Skew: -0.716 Prob(JB): 0.439
Kurtosis: 2.236 Cond. No. 1.61e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.487
Model: OLS Adj. R-squared: 0.402
Method: Least Squares F-statistic: 5.697
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0182
Time: 04:45:50 Log-Likelihood: -70.293
No. Observations: 15 AIC: 146.6
Df Residuals: 12 BIC: 148.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -374.2583 466.991 -0.801 0.438 -1391.744 643.227
C(dose)[T.1] 48.2875 15.214 3.174 0.008 15.139 81.436
expression 51.0270 53.935 0.946 0.363 -66.487 168.542
Omnibus: 2.021 Durbin-Watson: 0.811
Prob(Omnibus): 0.364 Jarque-Bera (JB): 1.573
Skew: -0.685 Prob(JB): 0.455
Kurtosis: 2.200 Cond. No. 542.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:45:50 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.056
Model: OLS Adj. R-squared: -0.016
Method: Least Squares F-statistic: 0.7773
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.394
Time: 04:45:50 Log-Likelihood: -74.865
No. Observations: 15 AIC: 153.7
Df Residuals: 13 BIC: 155.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -442.1805 607.879 -0.727 0.480 -1755.423 871.062
expression 61.8373 70.141 0.882 0.394 -89.692 213.367
Omnibus: 1.038 Durbin-Watson: 1.375
Prob(Omnibus): 0.595 Jarque-Bera (JB): 0.729
Skew: 0.094 Prob(JB): 0.694
Kurtosis: 1.936 Cond. No. 541.