AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.995 | 0.330 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.691 |
Model: | OLS | Adj. R-squared: | 0.642 |
Method: | Least Squares | F-statistic: | 14.14 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 4.43e-05 |
Time: | 03:56:24 | Log-Likelihood: | -99.612 |
No. Observations: | 23 | AIC: | 207.2 |
Df Residuals: | 19 | BIC: | 211.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 87.9092 | 139.722 | 0.629 | 0.537 | -204.533 380.352 |
C(dose)[T.1] | -181.4422 | 189.106 | -0.959 | 0.349 | -577.246 214.362 |
expression | -4.2731 | 17.700 | -0.241 | 0.812 | -41.321 32.774 |
expression:C(dose)[T.1] | 29.5180 | 23.847 | 1.238 | 0.231 | -20.394 79.430 |
Omnibus: | 0.091 | Durbin-Watson: | 1.530 |
Prob(Omnibus): | 0.956 | Jarque-Bera (JB): | 0.053 |
Skew: | 0.045 | Prob(JB): | 0.974 |
Kurtosis: | 2.783 | Cond. No. | 479. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.666 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 19.91 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.74e-05 |
Time: | 03:56:24 | Log-Likelihood: | -100.50 |
No. Observations: | 23 | AIC: | 207.0 |
Df Residuals: | 20 | BIC: | 210.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -40.3503 | 94.970 | -0.425 | 0.675 | -238.455 157.754 |
C(dose)[T.1] | 52.3984 | 8.611 | 6.085 | 0.000 | 34.436 70.361 |
expression | 11.9895 | 12.018 | 0.998 | 0.330 | -13.080 37.059 |
Omnibus: | 1.156 | Durbin-Watson: | 1.907 |
Prob(Omnibus): | 0.561 | Jarque-Bera (JB): | 0.847 |
Skew: | -0.096 | Prob(JB): | 0.655 |
Kurtosis: | 2.080 | Cond. No. | 179. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:56:24 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.047 |
Model: | OLS | Adj. R-squared: | 0.001 |
Method: | Least Squares | F-statistic: | 1.030 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.322 |
Time: | 03:56:24 | Log-Likelihood: | -112.55 |
No. Observations: | 23 | AIC: | 229.1 |
Df Residuals: | 21 | BIC: | 231.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -78.6174 | 156.159 | -0.503 | 0.620 | -403.367 246.132 |
expression | 19.9811 | 19.686 | 1.015 | 0.322 | -20.959 60.921 |
Omnibus: | 3.503 | Durbin-Watson: | 2.426 |
Prob(Omnibus): | 0.174 | Jarque-Bera (JB): | 1.393 |
Skew: | 0.086 | Prob(JB): | 0.498 |
Kurtosis: | 1.807 | Cond. No. | 179. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
4.028 | 0.068 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.588 |
Model: | OLS | Adj. R-squared: | 0.476 |
Method: | Least Squares | F-statistic: | 5.231 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0174 |
Time: | 03:56:24 | Log-Likelihood: | -68.651 |
No. Observations: | 15 | AIC: | 145.3 |
Df Residuals: | 11 | BIC: | 148.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -183.6350 | 173.935 | -1.056 | 0.314 | -566.464 199.194 |
C(dose)[T.1] | 59.0220 | 257.319 | 0.229 | 0.823 | -507.333 625.377 |
expression | 31.8737 | 22.043 | 1.446 | 0.176 | -16.642 80.389 |
expression:C(dose)[T.1] | -3.9433 | 31.091 | -0.127 | 0.901 | -72.374 64.487 |
Omnibus: | 2.211 | Durbin-Watson: | 0.932 |
Prob(Omnibus): | 0.331 | Jarque-Bera (JB): | 1.085 |
Skew: | -0.242 | Prob(JB): | 0.581 |
Kurtosis: | 1.775 | Cond. No. | 407. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.587 |
Model: | OLS | Adj. R-squared: | 0.519 |
Method: | Least Squares | F-statistic: | 8.538 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00494 |
Time: | 03:56:24 | Log-Likelihood: | -68.662 |
No. Observations: | 15 | AIC: | 143.3 |
Df Residuals: | 12 | BIC: | 145.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -168.0226 | 117.741 | -1.427 | 0.179 | -424.557 88.512 |
C(dose)[T.1] | 26.4701 | 17.712 | 1.494 | 0.161 | -12.121 65.061 |
expression | 29.8916 | 14.894 | 2.007 | 0.068 | -2.560 62.343 |
Omnibus: | 2.284 | Durbin-Watson: | 0.919 |
Prob(Omnibus): | 0.319 | Jarque-Bera (JB): | 1.086 |
Skew: | -0.225 | Prob(JB): | 0.581 |
Kurtosis: | 1.761 | Cond. No. | 147. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:56:24 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.510 |
Model: | OLS | Adj. R-squared: | 0.473 |
Method: | Least Squares | F-statistic: | 13.56 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00276 |
Time: | 03:56:24 | Log-Likelihood: | -69.943 |
No. Observations: | 15 | AIC: | 143.9 |
Df Residuals: | 13 | BIC: | 145.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -271.7725 | 99.506 | -2.731 | 0.017 | -486.742 -56.803 |
expression | 44.1228 | 11.984 | 3.682 | 0.003 | 18.234 70.012 |
Omnibus: | 1.374 | Durbin-Watson: | 1.382 |
Prob(Omnibus): | 0.503 | Jarque-Bera (JB): | 0.940 |
Skew: | 0.307 | Prob(JB): | 0.625 |
Kurtosis: | 1.939 | Cond. No. | 118. |