AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.681 | 0.419 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.683 |
Model: | OLS | Adj. R-squared: | 0.633 |
Method: | Least Squares | F-statistic: | 13.67 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 5.50e-05 |
Time: | 22:46:35 | Log-Likelihood: | -99.881 |
No. Observations: | 23 | AIC: | 207.8 |
Df Residuals: | 19 | BIC: | 212.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 33.3559 | 174.975 | 0.191 | 0.851 | -332.871 399.583 |
C(dose)[T.1] | -350.9217 | 345.141 | -1.017 | 0.322 | -1073.309 371.466 |
expression | 2.4969 | 20.939 | 0.119 | 0.906 | -41.330 46.324 |
expression:C(dose)[T.1] | 47.8345 | 40.970 | 1.168 | 0.257 | -37.917 133.586 |
Omnibus: | 0.315 | Durbin-Watson: | 1.950 |
Prob(Omnibus): | 0.854 | Jarque-Bera (JB): | 0.482 |
Skew: | 0.177 | Prob(JB): | 0.786 |
Kurtosis: | 2.386 | Cond. No. | 813. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.661 |
Model: | OLS | Adj. R-squared: | 0.627 |
Method: | Least Squares | F-statistic: | 19.47 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 2.03e-05 |
Time: | 22:46:35 | Log-Likelihood: | -100.68 |
No. Observations: | 23 | AIC: | 207.4 |
Df Residuals: | 20 | BIC: | 210.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -70.9956 | 151.786 | -0.468 | 0.645 | -387.615 245.624 |
C(dose)[T.1] | 51.9162 | 8.794 | 5.903 | 0.000 | 33.572 70.261 |
expression | 14.9918 | 18.161 | 0.826 | 0.419 | -22.891 52.874 |
Omnibus: | 0.063 | Durbin-Watson: | 1.942 |
Prob(Omnibus): | 0.969 | Jarque-Bera (JB): | 0.187 |
Skew: | 0.106 | Prob(JB): | 0.911 |
Kurtosis: | 2.611 | Cond. No. | 301. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 22:46:35 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.069 |
Model: | OLS | Adj. R-squared: | 0.025 |
Method: | Least Squares | F-statistic: | 1.562 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.225 |
Time: | 22:46:35 | Log-Likelihood: | -112.28 |
No. Observations: | 23 | AIC: | 228.6 |
Df Residuals: | 21 | BIC: | 230.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -222.3586 | 241.783 | -0.920 | 0.368 | -725.174 280.457 |
expression | 35.9751 | 28.783 | 1.250 | 0.225 | -23.882 95.832 |
Omnibus: | 1.935 | Durbin-Watson: | 2.348 |
Prob(Omnibus): | 0.380 | Jarque-Bera (JB): | 1.095 |
Skew: | 0.139 | Prob(JB): | 0.578 |
Kurtosis: | 1.968 | Cond. No. | 296. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.112 | 0.744 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.532 |
Model: | OLS | Adj. R-squared: | 0.404 |
Method: | Least Squares | F-statistic: | 4.169 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0336 |
Time: | 22:46:35 | Log-Likelihood: | -69.604 |
No. Observations: | 15 | AIC: | 147.2 |
Df Residuals: | 11 | BIC: | 150.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -10.2287 | 188.460 | -0.054 | 0.958 | -425.027 404.570 |
C(dose)[T.1] | 546.7238 | 366.361 | 1.492 | 0.164 | -259.632 1353.080 |
expression | 10.7755 | 26.105 | 0.413 | 0.688 | -46.682 68.233 |
expression:C(dose)[T.1] | -67.7836 | 49.991 | -1.356 | 0.202 | -177.813 42.246 |
Omnibus: | 0.310 | Durbin-Watson: | 1.002 |
Prob(Omnibus): | 0.856 | Jarque-Bera (JB): | 0.376 |
Skew: | -0.275 | Prob(JB): | 0.829 |
Kurtosis: | 2.454 | Cond. No. | 438. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.454 |
Model: | OLS | Adj. R-squared: | 0.363 |
Method: | Least Squares | F-statistic: | 4.986 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0265 |
Time: | 22:46:35 | Log-Likelihood: | -70.763 |
No. Observations: | 15 | AIC: | 147.5 |
Df Residuals: | 12 | BIC: | 149.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 122.9817 | 166.351 | 0.739 | 0.474 | -239.467 485.430 |
C(dose)[T.1] | 50.4165 | 16.085 | 3.134 | 0.009 | 15.370 85.463 |
expression | -7.7084 | 23.028 | -0.335 | 0.744 | -57.882 42.465 |
Omnibus: | 2.909 | Durbin-Watson: | 0.949 |
Prob(Omnibus): | 0.234 | Jarque-Bera (JB): | 1.958 |
Skew: | -0.870 | Prob(JB): | 0.376 |
Kurtosis: | 2.676 | Cond. No. | 159. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 22:46:35 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.007 |
Model: | OLS | Adj. R-squared: | -0.070 |
Method: | Least Squares | F-statistic: | 0.08852 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.771 |
Time: | 22:46:35 | Log-Likelihood: | -75.249 |
No. Observations: | 15 | AIC: | 154.5 |
Df Residuals: | 13 | BIC: | 155.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 30.6255 | 212.130 | 0.144 | 0.887 | -427.655 488.905 |
expression | 8.6462 | 29.061 | 0.298 | 0.771 | -54.136 71.428 |
Omnibus: | 1.311 | Durbin-Watson: | 1.519 |
Prob(Omnibus): | 0.519 | Jarque-Bera (JB): | 0.805 |
Skew: | 0.100 | Prob(JB): | 0.669 |
Kurtosis: | 1.883 | Cond. No. | 156. |