AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.511 0.233 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.686
Model: OLS Adj. R-squared: 0.637
Method: Least Squares F-statistic: 13.86
Date: Thu, 03 Apr 2025 Prob (F-statistic): 5.03e-05
Time: 22:52:13 Log-Likelihood: -99.770
No. Observations: 23 AIC: 207.5
Df Residuals: 19 BIC: 212.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 107.6543 218.009 0.494 0.627 -348.644 563.952
C(dose)[T.1] 321.6323 307.606 1.046 0.309 -322.193 965.458
expression -5.9917 24.432 -0.245 0.809 -57.128 45.144
expression:C(dose)[T.1] -30.2522 34.555 -0.875 0.392 -102.576 42.072
Omnibus: 0.905 Durbin-Watson: 1.616
Prob(Omnibus): 0.636 Jarque-Bera (JB): 0.895
Skew: 0.335 Prob(JB): 0.639
Kurtosis: 2.303 Cond. No. 846.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.674
Model: OLS Adj. R-squared: 0.641
Method: Least Squares F-statistic: 20.65
Date: Thu, 03 Apr 2025 Prob (F-statistic): 1.37e-05
Time: 22:52:13 Log-Likelihood: -100.23
No. Observations: 23 AIC: 206.5
Df Residuals: 20 BIC: 209.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 242.5534 153.323 1.582 0.129 -77.273 562.379
C(dose)[T.1] 52.4324 8.488 6.177 0.000 34.726 70.138
expression -21.1150 17.176 -1.229 0.233 -56.944 14.714
Omnibus: 1.073 Durbin-Watson: 1.642
Prob(Omnibus): 0.585 Jarque-Bera (JB): 0.832
Skew: 0.127 Prob(JB): 0.660
Kurtosis: 2.103 Cond. No. 328.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:52:13 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.051
Model: OLS Adj. R-squared: 0.006
Method: Least Squares F-statistic: 1.133
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.299
Time: 22:52:13 Log-Likelihood: -112.50
No. Observations: 23 AIC: 229.0
Df Residuals: 21 BIC: 231.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 349.5015 253.519 1.379 0.183 -177.721 876.724
expression -30.3147 28.476 -1.065 0.299 -89.534 28.905
Omnibus: 2.086 Durbin-Watson: 2.501
Prob(Omnibus): 0.352 Jarque-Bera (JB): 1.178
Skew: 0.195 Prob(JB): 0.555
Kurtosis: 1.962 Cond. No. 325.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.484 0.500 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.514
Model: OLS Adj. R-squared: 0.382
Method: Least Squares F-statistic: 3.882
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0408
Time: 22:52:13 Log-Likelihood: -69.884
No. Observations: 15 AIC: 147.8
Df Residuals: 11 BIC: 150.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 173.6148 287.819 0.603 0.559 -459.871 807.101
C(dose)[T.1] -322.1779 367.626 -0.876 0.400 -1131.318 486.962
expression -12.4689 33.771 -0.369 0.719 -86.799 61.861
expression:C(dose)[T.1] 42.5693 42.579 1.000 0.339 -51.147 136.286
Omnibus: 0.911 Durbin-Watson: 1.253
Prob(Omnibus): 0.634 Jarque-Bera (JB): 0.807
Skew: -0.469 Prob(JB): 0.668
Kurtosis: 2.358 Cond. No. 592.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.470
Model: OLS Adj. R-squared: 0.382
Method: Least Squares F-statistic: 5.324
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0221
Time: 22:52:14 Log-Likelihood: -70.536
No. Observations: 15 AIC: 147.1
Df Residuals: 12 BIC: 149.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -54.4374 175.518 -0.310 0.762 -436.859 327.984
C(dose)[T.1] 44.9887 16.574 2.714 0.019 8.877 81.101
expression 14.3101 20.568 0.696 0.500 -30.503 59.123
Omnibus: 1.767 Durbin-Watson: 0.834
Prob(Omnibus): 0.413 Jarque-Bera (JB): 1.360
Skew: -0.673 Prob(JB): 0.507
Kurtosis: 2.395 Cond. No. 201.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:52:14 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.145
Model: OLS Adj. R-squared: 0.079
Method: Least Squares F-statistic: 2.202
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.162
Time: 22:52:14 Log-Likelihood: -74.127
No. Observations: 15 AIC: 152.3
Df Residuals: 13 BIC: 153.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -207.1187 202.936 -1.021 0.326 -645.536 231.298
expression 34.6811 23.374 1.484 0.162 -15.815 85.177
Omnibus: 0.054 Durbin-Watson: 1.728
Prob(Omnibus): 0.973 Jarque-Bera (JB): 0.142
Skew: -0.093 Prob(JB): 0.932
Kurtosis: 2.561 Cond. No. 190.