AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
3.068 | 0.095 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.696 |
Model: | OLS | Adj. R-squared: | 0.648 |
Method: | Least Squares | F-statistic: | 14.49 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.78e-05 |
Time: | 22:46:39 | Log-Likelihood: | -99.418 |
No. Observations: | 23 | AIC: | 206.8 |
Df Residuals: | 19 | BIC: | 211.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -353.3269 | 278.715 | -1.268 | 0.220 | -936.684 230.030 |
C(dose)[T.1] | 79.6040 | 513.418 | 0.155 | 0.878 | -994.993 1154.201 |
expression | 42.0715 | 28.767 | 1.463 | 0.160 | -18.138 102.281 |
expression:C(dose)[T.1] | -3.9228 | 51.850 | -0.076 | 0.940 | -112.447 104.601 |
Omnibus: | 0.430 | Durbin-Watson: | 1.542 |
Prob(Omnibus): | 0.806 | Jarque-Bera (JB): | 0.548 |
Skew: | 0.083 | Prob(JB): | 0.760 |
Kurtosis: | 2.262 | Cond. No. | 1.46e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.696 |
Model: | OLS | Adj. R-squared: | 0.665 |
Method: | Least Squares | F-statistic: | 22.87 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 6.80e-06 |
Time: | 22:46:39 | Log-Likelihood: | -99.422 |
No. Observations: | 23 | AIC: | 204.8 |
Df Residuals: | 20 | BIC: | 208.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -341.6306 | 226.070 | -1.511 | 0.146 | -813.205 129.944 |
C(dose)[T.1] | 40.7700 | 10.870 | 3.751 | 0.001 | 18.095 63.445 |
expression | 40.8641 | 23.331 | 1.752 | 0.095 | -7.803 89.531 |
Omnibus: | 0.398 | Durbin-Watson: | 1.553 |
Prob(Omnibus): | 0.820 | Jarque-Bera (JB): | 0.532 |
Skew: | 0.093 | Prob(JB): | 0.767 |
Kurtosis: | 2.279 | Cond. No. | 552. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 22:46:39 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.482 |
Model: | OLS | Adj. R-squared: | 0.457 |
Method: | Least Squares | F-statistic: | 19.52 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.000239 |
Time: | 22:46:39 | Log-Likelihood: | -105.55 |
No. Observations: | 23 | AIC: | 215.1 |
Df Residuals: | 21 | BIC: | 217.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -890.1154 | 219.581 | -4.054 | 0.001 | -1346.759 -433.472 |
expression | 98.6223 | 22.323 | 4.418 | 0.000 | 52.199 145.045 |
Omnibus: | 1.760 | Durbin-Watson: | 1.886 |
Prob(Omnibus): | 0.415 | Jarque-Bera (JB): | 1.515 |
Skew: | 0.574 | Prob(JB): | 0.469 |
Kurtosis: | 2.489 | Cond. No. | 420. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.431 | 0.524 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.515 |
Model: | OLS | Adj. R-squared: | 0.383 |
Method: | Least Squares | F-statistic: | 3.901 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0402 |
Time: | 22:46:39 | Log-Likelihood: | -69.865 |
No. Observations: | 15 | AIC: | 147.7 |
Df Residuals: | 11 | BIC: | 150.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -203.0751 | 251.485 | -0.808 | 0.436 | -756.590 350.440 |
C(dose)[T.1] | 603.9604 | 539.232 | 1.120 | 0.287 | -582.881 1790.802 |
expression | 29.8667 | 27.739 | 1.077 | 0.305 | -31.186 90.920 |
expression:C(dose)[T.1] | -60.1105 | 57.825 | -1.040 | 0.321 | -187.383 67.162 |
Omnibus: | 5.582 | Durbin-Watson: | 0.653 |
Prob(Omnibus): | 0.061 | Jarque-Bera (JB): | 2.906 |
Skew: | -1.022 | Prob(JB): | 0.234 |
Kurtosis: | 3.688 | Cond. No. | 789. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.468 |
Model: | OLS | Adj. R-squared: | 0.379 |
Method: | Least Squares | F-statistic: | 5.276 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0227 |
Time: | 22:46:39 | Log-Likelihood: | -70.568 |
No. Observations: | 15 | AIC: | 147.1 |
Df Residuals: | 12 | BIC: | 149.3 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -77.7949 | 221.467 | -0.351 | 0.731 | -560.329 404.740 |
C(dose)[T.1] | 43.7139 | 17.575 | 2.487 | 0.029 | 5.422 82.006 |
expression | 16.0343 | 24.421 | 0.657 | 0.524 | -37.174 69.242 |
Omnibus: | 1.743 | Durbin-Watson: | 0.753 |
Prob(Omnibus): | 0.418 | Jarque-Bera (JB): | 1.384 |
Skew: | -0.629 | Prob(JB): | 0.501 |
Kurtosis: | 2.204 | Cond. No. | 269. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 22:46:39 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.194 |
Model: | OLS | Adj. R-squared: | 0.132 |
Method: | Least Squares | F-statistic: | 3.120 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.101 |
Time: | 22:46:39 | Log-Likelihood: | -73.687 |
No. Observations: | 15 | AIC: | 151.4 |
Df Residuals: | 13 | BIC: | 152.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -321.1274 | 235.006 | -1.366 | 0.195 | -828.826 186.572 |
expression | 44.8941 | 25.416 | 1.766 | 0.101 | -10.014 99.802 |
Omnibus: | 3.513 | Durbin-Watson: | 1.274 |
Prob(Omnibus): | 0.173 | Jarque-Bera (JB): | 1.417 |
Skew: | 0.339 | Prob(JB): | 0.492 |
Kurtosis: | 1.656 | Cond. No. | 241. |