AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.002 | 0.967 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.793 |
Model: | OLS | Adj. R-squared: | 0.761 |
Method: | Least Squares | F-statistic: | 24.33 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.01e-06 |
Time: | 04:03:38 | Log-Likelihood: | -94.965 |
No. Observations: | 23 | AIC: | 197.9 |
Df Residuals: | 19 | BIC: | 202.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -212.6760 | 129.759 | -1.639 | 0.118 | -484.265 58.913 |
C(dose)[T.1] | 914.0787 | 236.286 | 3.869 | 0.001 | 419.526 1408.632 |
expression | 30.5514 | 14.844 | 2.058 | 0.054 | -0.518 61.620 |
expression:C(dose)[T.1] | -97.9063 | 26.863 | -3.645 | 0.002 | -154.132 -41.681 |
Omnibus: | 2.209 | Durbin-Watson: | 1.796 |
Prob(Omnibus): | 0.331 | Jarque-Bera (JB): | 1.899 |
Skew: | -0.632 | Prob(JB): | 0.387 |
Kurtosis: | 2.380 | Cond. No. | 730. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.50 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.83e-05 |
Time: | 04:03:38 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 48.4723 | 137.444 | 0.353 | 0.728 | -238.231 335.176 |
C(dose)[T.1] | 53.2838 | 8.862 | 6.013 | 0.000 | 34.798 71.770 |
expression | 0.6566 | 15.719 | 0.042 | 0.967 | -32.132 33.445 |
Omnibus: | 0.313 | Durbin-Watson: | 1.890 |
Prob(Omnibus): | 0.855 | Jarque-Bera (JB): | 0.479 |
Skew: | 0.049 | Prob(JB): | 0.787 |
Kurtosis: | 2.300 | Cond. No. | 279. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:03:38 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.015 |
Model: | OLS | Adj. R-squared: | -0.032 |
Method: | Least Squares | F-statistic: | 0.3151 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.581 |
Time: | 04:03:38 | Log-Likelihood: | -112.93 |
No. Observations: | 23 | AIC: | 229.9 |
Df Residuals: | 21 | BIC: | 232.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -45.5593 | 223.289 | -0.204 | 0.840 | -509.915 418.797 |
expression | 14.2775 | 25.435 | 0.561 | 0.581 | -38.617 67.172 |
Omnibus: | 2.486 | Durbin-Watson: | 2.483 |
Prob(Omnibus): | 0.289 | Jarque-Bera (JB): | 1.653 |
Skew: | 0.437 | Prob(JB): | 0.438 |
Kurtosis: | 2.020 | Cond. No. | 277. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.277 | 0.281 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.533 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 4.193 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0331 |
Time: | 04:03:38 | Log-Likelihood: | -69.581 |
No. Observations: | 15 | AIC: | 147.2 |
Df Residuals: | 11 | BIC: | 150.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 85.0557 | 228.595 | 0.372 | 0.717 | -418.079 588.190 |
C(dose)[T.1] | -197.5736 | 280.582 | -0.704 | 0.496 | -815.129 419.982 |
expression | -2.4809 | 32.136 | -0.077 | 0.940 | -73.212 68.250 |
expression:C(dose)[T.1] | 33.7500 | 39.034 | 0.865 | 0.406 | -52.164 119.664 |
Omnibus: | 1.534 | Durbin-Watson: | 0.725 |
Prob(Omnibus): | 0.464 | Jarque-Bera (JB): | 1.209 |
Skew: | -0.530 | Prob(JB): | 0.546 |
Kurtosis: | 2.100 | Cond. No. | 395. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.502 |
Model: | OLS | Adj. R-squared: | 0.419 |
Method: | Least Squares | F-statistic: | 6.043 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0153 |
Time: | 04:03:38 | Log-Likelihood: | -70.075 |
No. Observations: | 15 | AIC: | 146.1 |
Df Residuals: | 12 | BIC: | 148.3 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -77.4760 | 128.700 | -0.602 | 0.558 | -357.890 202.938 |
C(dose)[T.1] | 44.6466 | 15.496 | 2.881 | 0.014 | 10.884 78.409 |
expression | 20.3947 | 18.049 | 1.130 | 0.281 | -18.930 59.719 |
Omnibus: | 3.020 | Durbin-Watson: | 0.955 |
Prob(Omnibus): | 0.221 | Jarque-Bera (JB): | 1.579 |
Skew: | -0.503 | Prob(JB): | 0.454 |
Kurtosis: | 1.769 | Cond. No. | 128. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:03:38 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.157 |
Model: | OLS | Adj. R-squared: | 0.092 |
Method: | Least Squares | F-statistic: | 2.424 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.144 |
Time: | 04:03:38 | Log-Likelihood: | -74.018 |
No. Observations: | 15 | AIC: | 152.0 |
Df Residuals: | 13 | BIC: | 153.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -151.2756 | 157.613 | -0.960 | 0.355 | -491.778 189.227 |
expression | 33.9068 | 21.780 | 1.557 | 0.144 | -13.146 80.959 |
Omnibus: | 0.124 | Durbin-Watson: | 1.553 |
Prob(Omnibus): | 0.940 | Jarque-Bera (JB): | 0.345 |
Skew: | -0.038 | Prob(JB): | 0.842 |
Kurtosis: | 2.261 | Cond. No. | 125. |