AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.666 0.424 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.664
Model: OLS Adj. R-squared: 0.611
Method: Least Squares F-statistic: 12.50
Date: Thu, 21 Nov 2024 Prob (F-statistic): 9.62e-05
Time: 05:03:54 Log-Likelihood: -100.57
No. Observations: 23 AIC: 209.1
Df Residuals: 19 BIC: 213.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 90.3059 106.852 0.845 0.409 -133.338 313.950
C(dose)[T.1] 117.1027 159.624 0.734 0.472 -216.993 451.199
expression -5.4770 16.186 -0.338 0.739 -39.355 28.401
expression:C(dose)[T.1] -10.9642 25.339 -0.433 0.670 -63.999 42.071
Omnibus: 1.236 Durbin-Watson: 1.841
Prob(Omnibus): 0.539 Jarque-Bera (JB): 0.894
Skew: 0.141 Prob(JB): 0.639
Kurtosis: 2.076 Cond. No. 294.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.660
Model: OLS Adj. R-squared: 0.626
Method: Least Squares F-statistic: 19.44
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.04e-05
Time: 05:03:54 Log-Likelihood: -100.69
No. Observations: 23 AIC: 207.4
Df Residuals: 20 BIC: 210.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 119.7922 80.613 1.486 0.153 -48.363 287.947
C(dose)[T.1] 48.1947 10.685 4.511 0.000 25.906 70.483
expression -9.9510 12.198 -0.816 0.424 -35.395 15.493
Omnibus: 1.012 Durbin-Watson: 1.924
Prob(Omnibus): 0.603 Jarque-Bera (JB): 0.781
Skew: 0.004 Prob(JB): 0.677
Kurtosis: 2.098 Cond. No. 122.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:03:54 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.315
Model: OLS Adj. R-squared: 0.282
Method: Least Squares F-statistic: 9.651
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00534
Time: 05:03:54 Log-Likelihood: -108.76
No. Observations: 23 AIC: 221.5
Df Residuals: 21 BIC: 223.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 348.7387 86.804 4.018 0.001 168.219 529.258
expression -42.4086 13.651 -3.107 0.005 -70.798 -14.019
Omnibus: 0.278 Durbin-Watson: 2.674
Prob(Omnibus): 0.870 Jarque-Bera (JB): 0.048
Skew: 0.104 Prob(JB): 0.976
Kurtosis: 2.918 Cond. No. 94.7

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.318 0.583 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.560
Model: OLS Adj. R-squared: 0.440
Method: Least Squares F-statistic: 4.660
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0245
Time: 05:03:54 Log-Likelihood: -69.149
No. Observations: 15 AIC: 146.3
Df Residuals: 11 BIC: 149.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 253.9433 135.689 1.872 0.088 -44.705 552.592
C(dose)[T.1] -316.4172 235.455 -1.344 0.206 -834.651 201.816
expression -25.5360 18.519 -1.379 0.195 -66.296 15.224
expression:C(dose)[T.1] 50.2197 32.317 1.554 0.148 -20.909 121.349
Omnibus: 2.650 Durbin-Watson: 1.052
Prob(Omnibus): 0.266 Jarque-Bera (JB): 1.144
Skew: -0.664 Prob(JB): 0.564
Kurtosis: 3.264 Cond. No. 295.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.463
Model: OLS Adj. R-squared: 0.373
Method: Least Squares F-statistic: 5.173
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0240
Time: 05:03:54 Log-Likelihood: -70.637
No. Observations: 15 AIC: 147.3
Df Residuals: 12 BIC: 149.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 133.4903 117.752 1.134 0.279 -123.070 390.050
C(dose)[T.1] 48.7602 15.555 3.135 0.009 14.870 82.651
expression -9.0446 16.047 -0.564 0.583 -44.007 25.918
Omnibus: 2.577 Durbin-Watson: 0.848
Prob(Omnibus): 0.276 Jarque-Bera (JB): 1.805
Skew: -0.823 Prob(JB): 0.405
Kurtosis: 2.578 Cond. No. 113.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:03:54 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.023
Model: OLS Adj. R-squared: -0.052
Method: Least Squares F-statistic: 0.3092
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.588
Time: 05:03:54 Log-Likelihood: -75.124
No. Observations: 15 AIC: 154.2
Df Residuals: 13 BIC: 155.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 177.7118 151.479 1.173 0.262 -149.539 504.963
expression -11.5474 20.767 -0.556 0.588 -56.411 33.316
Omnibus: 2.277 Durbin-Watson: 1.750
Prob(Omnibus): 0.320 Jarque-Bera (JB): 1.117
Skew: 0.265 Prob(JB): 0.572
Kurtosis: 1.772 Cond. No. 112.