AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.086 | 0.772 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.651 |
Model: | OLS | Adj. R-squared: | 0.596 |
Method: | Least Squares | F-statistic: | 11.83 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000135 |
Time: | 05:01:06 | Log-Likelihood: | -100.99 |
No. Observations: | 23 | AIC: | 210.0 |
Df Residuals: | 19 | BIC: | 214.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 97.1923 | 195.699 | 0.497 | 0.625 | -312.410 506.795 |
C(dose)[T.1] | 195.9732 | 720.333 | 0.272 | 0.789 | -1311.700 1703.647 |
expression | -3.9715 | 18.073 | -0.220 | 0.828 | -41.798 33.855 |
expression:C(dose)[T.1] | -12.3987 | 63.751 | -0.194 | 0.848 | -145.831 121.034 |
Omnibus: | 1.256 | Durbin-Watson: | 1.931 |
Prob(Omnibus): | 0.534 | Jarque-Bera (JB): | 0.895 |
Skew: | 0.130 | Prob(JB): | 0.639 |
Kurtosis: | 2.069 | Cond. No. | 2.06e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.651 |
Model: | OLS | Adj. R-squared: | 0.616 |
Method: | Least Squares | F-statistic: | 18.62 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.71e-05 |
Time: | 05:01:07 | Log-Likelihood: | -101.01 |
No. Observations: | 23 | AIC: | 208.0 |
Df Residuals: | 20 | BIC: | 211.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 107.9766 | 183.109 | 0.590 | 0.562 | -273.981 489.935 |
C(dose)[T.1] | 55.8999 | 12.356 | 4.524 | 0.000 | 30.126 81.674 |
expression | -4.9680 | 16.909 | -0.294 | 0.772 | -40.240 30.304 |
Omnibus: | 0.692 | Durbin-Watson: | 1.952 |
Prob(Omnibus): | 0.707 | Jarque-Bera (JB): | 0.669 |
Skew: | 0.072 | Prob(JB): | 0.716 |
Kurtosis: | 2.177 | Cond. No. | 469. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:01:07 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.293 |
Model: | OLS | Adj. R-squared: | 0.259 |
Method: | Least Squares | F-statistic: | 8.701 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00765 |
Time: | 05:01:07 | Log-Likelihood: | -109.12 |
No. Observations: | 23 | AIC: | 222.2 |
Df Residuals: | 21 | BIC: | 224.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -463.1243 | 184.133 | -2.515 | 0.020 | -846.050 -80.199 |
expression | 49.0385 | 16.625 | 2.950 | 0.008 | 14.465 83.612 |
Omnibus: | 3.022 | Durbin-Watson: | 1.899 |
Prob(Omnibus): | 0.221 | Jarque-Bera (JB): | 1.284 |
Skew: | 0.010 | Prob(JB): | 0.526 |
Kurtosis: | 1.843 | Cond. No. | 339. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.081 | 0.781 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.483 |
Model: | OLS | Adj. R-squared: | 0.342 |
Method: | Least Squares | F-statistic: | 3.420 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0563 |
Time: | 05:01:07 | Log-Likelihood: | -70.358 |
No. Observations: | 15 | AIC: | 148.7 |
Df Residuals: | 11 | BIC: | 151.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 204.8055 | 456.559 | 0.449 | 0.662 | -800.073 1209.684 |
C(dose)[T.1] | -524.9356 | 715.349 | -0.734 | 0.478 | -2099.408 1049.537 |
expression | -12.6987 | 42.189 | -0.301 | 0.769 | -105.557 80.159 |
expression:C(dose)[T.1] | 52.4982 | 65.554 | 0.801 | 0.440 | -91.785 196.781 |
Omnibus: | 2.718 | Durbin-Watson: | 0.826 |
Prob(Omnibus): | 0.257 | Jarque-Bera (JB): | 1.780 |
Skew: | -0.648 | Prob(JB): | 0.411 |
Kurtosis: | 1.919 | Cond. No. | 1.27e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.452 |
Model: | OLS | Adj. R-squared: | 0.361 |
Method: | Least Squares | F-statistic: | 4.958 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0269 |
Time: | 05:01:07 | Log-Likelihood: | -70.783 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 12 | BIC: | 149.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -30.4308 | 344.257 | -0.088 | 0.931 | -780.503 719.641 |
C(dose)[T.1] | 47.7876 | 16.450 | 2.905 | 0.013 | 11.946 83.630 |
expression | 9.0458 | 31.805 | 0.284 | 0.781 | -60.250 78.342 |
Omnibus: | 2.244 | Durbin-Watson: | 0.900 |
Prob(Omnibus): | 0.326 | Jarque-Bera (JB): | 1.697 |
Skew: | -0.764 | Prob(JB): | 0.428 |
Kurtosis: | 2.386 | Cond. No. | 484. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:01:07 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.067 |
Model: | OLS | Adj. R-squared: | -0.004 |
Method: | Least Squares | F-statistic: | 0.9397 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.350 |
Time: | 05:01:07 | Log-Likelihood: | -74.777 |
No. Observations: | 15 | AIC: | 153.6 |
Df Residuals: | 13 | BIC: | 155.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -308.2057 | 414.673 | -0.743 | 0.471 | -1204.052 587.641 |
expression | 36.8649 | 38.028 | 0.969 | 0.350 | -45.291 119.020 |
Omnibus: | 0.317 | Durbin-Watson: | 1.582 |
Prob(Omnibus): | 0.854 | Jarque-Bera (JB): | 0.461 |
Skew: | -0.072 | Prob(JB): | 0.794 |
Kurtosis: | 2.153 | Cond. No. | 465. |