AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.299 0.591 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.657
Model: OLS Adj. R-squared: 0.602
Method: Least Squares F-statistic: 12.11
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000117
Time: 04:25:44 Log-Likelihood: -100.81
No. Observations: 23 AIC: 209.6
Df Residuals: 19 BIC: 214.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 66.6154 47.504 1.402 0.177 -32.812 166.043
C(dose)[T.1] 84.6376 87.947 0.962 0.348 -99.437 268.712
expression -2.0411 7.749 -0.263 0.795 -18.260 14.178
expression:C(dose)[T.1] -5.4348 14.802 -0.367 0.718 -36.416 25.546
Omnibus: 0.010 Durbin-Watson: 1.811
Prob(Omnibus): 0.995 Jarque-Bera (JB): 0.199
Skew: 0.023 Prob(JB): 0.905
Kurtosis: 2.547 Cond. No. 144.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.654
Model: OLS Adj. R-squared: 0.620
Method: Least Squares F-statistic: 18.92
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.44e-05
Time: 04:25:44 Log-Likelihood: -100.89
No. Observations: 23 AIC: 207.8
Df Residuals: 20 BIC: 211.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 75.6694 39.715 1.905 0.071 -7.174 158.513
C(dose)[T.1] 52.5172 8.833 5.945 0.000 34.091 70.943
expression -3.5305 6.458 -0.547 0.591 -17.001 9.940
Omnibus: 0.127 Durbin-Watson: 1.824
Prob(Omnibus): 0.938 Jarque-Bera (JB): 0.343
Skew: 0.078 Prob(JB): 0.843
Kurtosis: 2.423 Cond. No. 56.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:25:44 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.043
Model: OLS Adj. R-squared: -0.002
Method: Least Squares F-statistic: 0.9460
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.342
Time: 04:25:44 Log-Likelihood: -112.60
No. Observations: 23 AIC: 229.2
Df Residuals: 21 BIC: 231.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 139.6872 62.060 2.251 0.035 10.626 268.748
expression -10.0491 10.332 -0.973 0.342 -31.535 11.437
Omnibus: 4.462 Durbin-Watson: 2.292
Prob(Omnibus): 0.107 Jarque-Bera (JB): 1.727
Skew: 0.258 Prob(JB): 0.422
Kurtosis: 1.761 Cond. No. 54.2

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.072 0.793 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.500
Model: OLS Adj. R-squared: 0.364
Method: Least Squares F-statistic: 3.672
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0471
Time: 04:25:44 Log-Likelihood: -70.096
No. Observations: 15 AIC: 148.2
Df Residuals: 11 BIC: 151.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -62.2333 176.660 -0.352 0.731 -451.060 326.593
C(dose)[T.1] 272.4897 214.622 1.270 0.230 -199.889 744.869
expression 24.7550 33.657 0.736 0.477 -49.324 98.834
expression:C(dose)[T.1] -40.8009 39.569 -1.031 0.325 -127.891 46.289
Omnibus: 1.377 Durbin-Watson: 0.799
Prob(Omnibus): 0.502 Jarque-Bera (JB): 1.137
Skew: -0.569 Prob(JB): 0.566
Kurtosis: 2.275 Cond. No. 234.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.452
Model: OLS Adj. R-squared: 0.361
Method: Least Squares F-statistic: 4.950
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0271
Time: 04:25:44 Log-Likelihood: -70.788
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 92.3892 93.643 0.987 0.343 -111.640 296.419
C(dose)[T.1] 52.0435 18.938 2.748 0.018 10.782 93.305
expression -4.7655 17.744 -0.269 0.793 -43.426 33.895
Omnibus: 2.340 Durbin-Watson: 0.859
Prob(Omnibus): 0.310 Jarque-Bera (JB): 1.719
Skew: -0.785 Prob(JB): 0.423
Kurtosis: 2.468 Cond. No. 69.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:25:44 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.107
Model: OLS Adj. R-squared: 0.039
Method: Least Squares F-statistic: 1.561
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.234
Time: 04:25:44 Log-Likelihood: -74.449
No. Observations: 15 AIC: 152.9
Df Residuals: 13 BIC: 154.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -31.5248 100.652 -0.313 0.759 -248.970 185.921
expression 22.5309 18.032 1.250 0.234 -16.425 61.486
Omnibus: 0.445 Durbin-Watson: 1.433
Prob(Omnibus): 0.801 Jarque-Bera (JB): 0.517
Skew: -0.003 Prob(JB): 0.772
Kurtosis: 2.091 Cond. No. 60.4