AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
3.304 0.084 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.706
Model: OLS Adj. R-squared: 0.659
Method: Least Squares F-statistic: 15.20
Date: Thu, 03 Apr 2025 Prob (F-statistic): 2.76e-05
Time: 23:02:21 Log-Likelihood: -99.030
No. Observations: 23 AIC: 206.1
Df Residuals: 19 BIC: 210.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -384.7578 254.910 -1.509 0.148 -918.291 148.775
C(dose)[T.1] 293.1873 348.117 0.842 0.410 -435.431 1021.805
expression 45.8369 26.611 1.722 0.101 -9.861 101.535
expression:C(dose)[T.1] -24.7520 36.579 -0.677 0.507 -101.312 51.808
Omnibus: 0.441 Durbin-Watson: 1.787
Prob(Omnibus): 0.802 Jarque-Bera (JB): 0.571
Skew: -0.188 Prob(JB): 0.752
Kurtosis: 2.326 Cond. No. 1.07e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.699
Model: OLS Adj. R-squared: 0.669
Method: Least Squares F-statistic: 23.20
Date: Thu, 03 Apr 2025 Prob (F-statistic): 6.14e-06
Time: 23:02:21 Log-Likelihood: -99.304
No. Observations: 23 AIC: 204.6
Df Residuals: 20 BIC: 208.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -259.3017 172.558 -1.503 0.149 -619.251 100.647
C(dose)[T.1] 57.6967 8.471 6.811 0.000 40.027 75.367
expression 32.7367 18.009 1.818 0.084 -4.829 70.303
Omnibus: 0.334 Durbin-Watson: 1.716
Prob(Omnibus): 0.846 Jarque-Bera (JB): 0.498
Skew: -0.139 Prob(JB): 0.780
Kurtosis: 2.335 Cond. No. 410.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 23:02:21 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.047
Method: Least Squares F-statistic: 0.004203
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.949
Time: 23:02:21 Log-Likelihood: -113.10
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 98.6568 292.242 0.338 0.739 -509.094 706.408
expression -1.9909 30.711 -0.065 0.949 -65.858 61.876
Omnibus: 3.160 Durbin-Watson: 2.500
Prob(Omnibus): 0.206 Jarque-Bera (JB): 1.537
Skew: 0.287 Prob(JB): 0.464
Kurtosis: 1.871 Cond. No. 390.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.008 0.929 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.523
Model: OLS Adj. R-squared: 0.393
Method: Least Squares F-statistic: 4.021
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0371
Time: 23:02:21 Log-Likelihood: -69.748
No. Observations: 15 AIC: 147.5
Df Residuals: 11 BIC: 150.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 169.0989 130.681 1.294 0.222 -118.528 456.726
C(dose)[T.1] -280.1280 253.346 -1.106 0.292 -837.738 277.482
expression -13.6061 17.425 -0.781 0.451 -51.957 24.745
expression:C(dose)[T.1] 42.3098 32.415 1.305 0.218 -29.036 113.655
Omnibus: 3.206 Durbin-Watson: 0.983
Prob(Omnibus): 0.201 Jarque-Bera (JB): 1.755
Skew: -0.837 Prob(JB): 0.416
Kurtosis: 3.058 Cond. No. 320.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.357
Method: Least Squares F-statistic: 4.892
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0279
Time: 23:02:21 Log-Likelihood: -70.828
No. Observations: 15 AIC: 147.7
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 77.7453 113.548 0.685 0.507 -169.655 325.146
C(dose)[T.1] 49.8298 17.195 2.898 0.013 12.365 87.294
expression -1.3806 15.118 -0.091 0.929 -34.319 31.558
Omnibus: 2.780 Durbin-Watson: 0.840
Prob(Omnibus): 0.249 Jarque-Bera (JB): 1.893
Skew: -0.852 Prob(JB): 0.388
Kurtosis: 2.645 Cond. No. 114.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 23:02:21 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.064
Model: OLS Adj. R-squared: -0.008
Method: Least Squares F-statistic: 0.8838
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.364
Time: 23:02:22 Log-Likelihood: -74.807
No. Observations: 15 AIC: 153.6
Df Residuals: 13 BIC: 155.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -32.0444 134.083 -0.239 0.815 -321.714 257.625
expression 16.2900 17.328 0.940 0.364 -21.145 53.725
Omnibus: 1.094 Durbin-Watson: 1.254
Prob(Omnibus): 0.579 Jarque-Bera (JB): 0.775
Skew: -0.175 Prob(JB): 0.679
Kurtosis: 1.944 Cond. No. 107.