AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.777 0.388 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.666
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 12.65
Date: Thu, 21 Nov 2024 Prob (F-statistic): 8.94e-05
Time: 03:44:50 Log-Likelihood: -100.48
No. Observations: 23 AIC: 209.0
Df Residuals: 19 BIC: 213.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 76.1852 38.368 1.986 0.062 -4.121 156.491
C(dose)[T.1] 93.9628 87.022 1.080 0.294 -88.177 276.103
expression -6.6834 11.521 -0.580 0.569 -30.798 17.431
expression:C(dose)[T.1] -13.2949 27.386 -0.485 0.633 -70.614 44.024
Omnibus: 1.776 Durbin-Watson: 1.666
Prob(Omnibus): 0.411 Jarque-Bera (JB): 1.050
Skew: 0.135 Prob(JB): 0.591
Kurtosis: 1.989 Cond. No. 80.7

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.662
Model: OLS Adj. R-squared: 0.628
Method: Least Squares F-statistic: 19.60
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.94e-05
Time: 03:44:50 Log-Likelihood: -100.62
No. Observations: 23 AIC: 207.2
Df Residuals: 20 BIC: 210.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 83.9230 34.228 2.452 0.024 12.525 155.321
C(dose)[T.1] 51.9386 8.749 5.936 0.000 33.688 70.189
expression -9.0365 10.250 -0.882 0.388 -30.419 12.346
Omnibus: 0.600 Durbin-Watson: 1.699
Prob(Omnibus): 0.741 Jarque-Bera (JB): 0.621
Skew: 0.007 Prob(JB): 0.733
Kurtosis: 2.195 Cond. No. 28.5

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:44:50 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.067
Model: OLS Adj. R-squared: 0.023
Method: Least Squares F-statistic: 1.507
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.233
Time: 03:44:50 Log-Likelihood: -112.31
No. Observations: 23 AIC: 228.6
Df Residuals: 21 BIC: 230.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 144.2265 53.012 2.721 0.013 33.983 254.470
expression -20.0696 16.349 -1.228 0.233 -54.070 13.931
Omnibus: 0.663 Durbin-Watson: 2.099
Prob(Omnibus): 0.718 Jarque-Bera (JB): 0.690
Skew: 0.176 Prob(JB): 0.708
Kurtosis: 2.228 Cond. No. 27.0

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.038 0.848 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.466
Model: OLS Adj. R-squared: 0.320
Method: Least Squares F-statistic: 3.200
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0662
Time: 03:44:50 Log-Likelihood: -70.595
No. Observations: 15 AIC: 149.2
Df Residuals: 11 BIC: 152.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 62.4119 64.041 0.975 0.351 -78.541 203.365
C(dose)[T.1] 118.1676 126.350 0.935 0.370 -159.927 396.262
expression 1.3789 17.300 0.080 0.938 -36.698 39.455
expression:C(dose)[T.1] -22.0196 39.016 -0.564 0.584 -107.893 63.854
Omnibus: 5.622 Durbin-Watson: 0.749
Prob(Omnibus): 0.060 Jarque-Bera (JB): 3.214
Skew: -1.115 Prob(JB): 0.200
Kurtosis: 3.417 Cond. No. 67.4

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.451
Model: OLS Adj. R-squared: 0.359
Method: Least Squares F-statistic: 4.920
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0275
Time: 03:44:50 Log-Likelihood: -70.809
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 78.1626 55.979 1.396 0.188 -43.806 200.131
C(dose)[T.1] 47.6038 17.693 2.691 0.020 9.055 86.153
expression -2.9503 15.059 -0.196 0.848 -35.762 29.861
Omnibus: 3.337 Durbin-Watson: 0.800
Prob(Omnibus): 0.189 Jarque-Bera (JB): 2.179
Skew: -0.927 Prob(JB): 0.336
Kurtosis: 2.770 Cond. No. 26.8

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:44:50 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.119
Model: OLS Adj. R-squared: 0.051
Method: Least Squares F-statistic: 1.757
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.208
Time: 03:44:50 Log-Likelihood: -74.349
No. Observations: 15 AIC: 152.7
Df Residuals: 13 BIC: 154.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 165.9261 55.345 2.998 0.010 46.361 285.491
expression -21.5676 16.272 -1.325 0.208 -56.721 13.586
Omnibus: 1.214 Durbin-Watson: 1.599
Prob(Omnibus): 0.545 Jarque-Bera (JB): 0.741
Skew: -0.525 Prob(JB): 0.690
Kurtosis: 2.714 Cond. No. 21.4