AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.522 | 0.128 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.690 |
Model: | OLS | Adj. R-squared: | 0.641 |
Method: | Least Squares | F-statistic: | 14.08 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 4.54e-05 |
Time: | 03:38:18 | Log-Likelihood: | -99.644 |
No. Observations: | 23 | AIC: | 207.3 |
Df Residuals: | 19 | BIC: | 211.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 88.5139 | 189.260 | 0.468 | 0.645 | -307.612 484.640 |
C(dose)[T.1] | 100.1058 | 196.282 | 0.510 | 0.616 | -310.717 510.928 |
expression | -4.4342 | 24.451 | -0.181 | 0.858 | -55.611 46.743 |
expression:C(dose)[T.1] | -7.5944 | 25.625 | -0.296 | 0.770 | -61.228 46.039 |
Omnibus: | 0.429 | Durbin-Watson: | 2.046 |
Prob(Omnibus): | 0.807 | Jarque-Bera (JB): | 0.555 |
Skew: | 0.128 | Prob(JB): | 0.758 |
Kurtosis: | 2.283 | Cond. No. | 524. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.688 |
Model: | OLS | Adj. R-squared: | 0.657 |
Method: | Least Squares | F-statistic: | 22.09 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 8.64e-06 |
Time: | 03:38:18 | Log-Likelihood: | -99.697 |
No. Observations: | 23 | AIC: | 205.4 |
Df Residuals: | 20 | BIC: | 208.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 142.0104 | 55.582 | 2.555 | 0.019 | 26.068 257.953 |
C(dose)[T.1] | 42.0281 | 10.909 | 3.853 | 0.001 | 19.272 64.784 |
expression | -11.3489 | 7.146 | -1.588 | 0.128 | -26.256 3.558 |
Omnibus: | 0.535 | Durbin-Watson: | 2.089 |
Prob(Omnibus): | 0.765 | Jarque-Bera (JB): | 0.608 |
Skew: | 0.116 | Prob(JB): | 0.738 |
Kurtosis: | 2.238 | Cond. No. | 101. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:38:18 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.457 |
Model: | OLS | Adj. R-squared: | 0.431 |
Method: | Least Squares | F-statistic: | 17.68 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000398 |
Time: | 03:38:18 | Log-Likelihood: | -106.08 |
No. Observations: | 23 | AIC: | 216.2 |
Df Residuals: | 21 | BIC: | 218.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 292.5854 | 50.904 | 5.748 | 0.000 | 186.724 398.447 |
expression | -29.3206 | 6.973 | -4.205 | 0.000 | -43.822 -14.819 |
Omnibus: | 0.706 | Durbin-Watson: | 2.274 |
Prob(Omnibus): | 0.703 | Jarque-Bera (JB): | 0.704 |
Skew: | 0.356 | Prob(JB): | 0.703 |
Kurtosis: | 2.522 | Cond. No. | 71.2 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.243 | 0.631 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.463 |
Model: | OLS | Adj. R-squared: | 0.317 |
Method: | Least Squares | F-statistic: | 3.166 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0678 |
Time: | 03:38:18 | Log-Likelihood: | -70.632 |
No. Observations: | 15 | AIC: | 149.3 |
Df Residuals: | 11 | BIC: | 152.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 64.0836 | 360.786 | 0.178 | 0.862 | -730.000 858.168 |
C(dose)[T.1] | 165.7917 | 416.150 | 0.398 | 0.698 | -750.148 1081.732 |
expression | 0.4382 | 47.235 | 0.009 | 0.993 | -103.524 104.401 |
expression:C(dose)[T.1] | -14.7811 | 54.028 | -0.274 | 0.789 | -133.697 104.135 |
Omnibus: | 2.267 | Durbin-Watson: | 0.890 |
Prob(Omnibus): | 0.322 | Jarque-Bera (JB): | 1.714 |
Skew: | -0.702 | Prob(JB): | 0.424 |
Kurtosis: | 2.120 | Cond. No. | 609. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.460 |
Model: | OLS | Adj. R-squared: | 0.370 |
Method: | Least Squares | F-statistic: | 5.105 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0249 |
Time: | 03:38:18 | Log-Likelihood: | -70.683 |
No. Observations: | 15 | AIC: | 147.4 |
Df Residuals: | 12 | BIC: | 149.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 150.3290 | 168.557 | 0.892 | 0.390 | -216.926 517.584 |
C(dose)[T.1] | 52.0400 | 16.616 | 3.132 | 0.009 | 15.837 88.243 |
expression | -10.8593 | 22.029 | -0.493 | 0.631 | -58.857 37.138 |
Omnibus: | 2.096 | Durbin-Watson: | 0.797 |
Prob(Omnibus): | 0.351 | Jarque-Bera (JB): | 1.573 |
Skew: | -0.647 | Prob(JB): | 0.455 |
Kurtosis: | 2.083 | Cond. No. | 172. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:38:18 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.018 |
Model: | OLS | Adj. R-squared: | -0.057 |
Method: | Least Squares | F-statistic: | 0.2394 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.633 |
Time: | 03:38:18 | Log-Likelihood: | -75.163 |
No. Observations: | 15 | AIC: | 154.3 |
Df Residuals: | 13 | BIC: | 155.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -8.1103 | 208.254 | -0.039 | 0.970 | -458.017 441.796 |
expression | 13.0925 | 26.758 | 0.489 | 0.633 | -44.715 70.900 |
Omnibus: | 0.291 | Durbin-Watson: | 1.594 |
Prob(Omnibus): | 0.864 | Jarque-Bera (JB): | 0.449 |
Skew: | -0.091 | Prob(JB): | 0.799 |
Kurtosis: | 2.172 | Cond. No. | 164. |