AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.554 | 0.227 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.689 |
Model: | OLS | Adj. R-squared: | 0.640 |
Method: | Least Squares | F-statistic: | 14.02 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 4.67e-05 |
Time: | 11:39:10 | Log-Likelihood: | -99.679 |
No. Observations: | 23 | AIC: | 207.4 |
Df Residuals: | 19 | BIC: | 211.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 206.9594 | 100.520 | 2.059 | 0.053 | -3.432 417.350 |
C(dose)[T.1] | -75.6071 | 123.249 | -0.613 | 0.547 | -333.571 182.357 |
expression | -22.7209 | 14.926 | -1.522 | 0.144 | -53.962 8.520 |
expression:C(dose)[T.1] | 18.4546 | 19.620 | 0.941 | 0.359 | -22.610 59.519 |
Omnibus: | 0.139 | Durbin-Watson: | 1.845 |
Prob(Omnibus): | 0.933 | Jarque-Bera (JB): | 0.352 |
Skew: | -0.085 | Prob(JB): | 0.839 |
Kurtosis: | 2.418 | Cond. No. | 249. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.674 |
Model: | OLS | Adj. R-squared: | 0.642 |
Method: | Least Squares | F-statistic: | 20.71 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 1.34e-05 |
Time: | 11:39:10 | Log-Likelihood: | -100.20 |
No. Observations: | 23 | AIC: | 206.4 |
Df Residuals: | 20 | BIC: | 209.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 135.1501 | 65.202 | 2.073 | 0.051 | -0.859 271.159 |
C(dose)[T.1] | 39.5778 | 13.901 | 2.847 | 0.010 | 10.582 68.574 |
expression | -12.0397 | 9.659 | -1.246 | 0.227 | -32.189 8.110 |
Omnibus: | 0.008 | Durbin-Watson: | 1.881 |
Prob(Omnibus): | 0.996 | Jarque-Bera (JB): | 0.170 |
Skew: | -0.037 | Prob(JB): | 0.919 |
Kurtosis: | 2.586 | Cond. No. | 100. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 11:39:10 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.542 |
Model: | OLS | Adj. R-squared: | 0.521 |
Method: | Least Squares | F-statistic: | 24.89 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 6.16e-05 |
Time: | 11:39:10 | Log-Likelihood: | -104.12 |
No. Observations: | 23 | AIC: | 212.2 |
Df Residuals: | 21 | BIC: | 214.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 288.9744 | 42.229 | 6.843 | 0.000 | 201.154 376.795 |
expression | -33.8804 | 6.791 | -4.989 | 0.000 | -48.004 -19.757 |
Omnibus: | 0.244 | Durbin-Watson: | 1.994 |
Prob(Omnibus): | 0.885 | Jarque-Bera (JB): | 0.385 |
Skew: | 0.200 | Prob(JB): | 0.825 |
Kurtosis: | 2.508 | Cond. No. | 55.2 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
4.837 | 0.048 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.609 |
Model: | OLS | Adj. R-squared: | 0.503 |
Method: | Least Squares | F-statistic: | 5.723 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 0.0131 |
Time: | 11:39:10 | Log-Likelihood: | -68.248 |
No. Observations: | 15 | AIC: | 144.5 |
Df Residuals: | 11 | BIC: | 147.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 144.3283 | 81.904 | 1.762 | 0.106 | -35.941 324.598 |
C(dose)[T.1] | 80.6332 | 100.147 | 0.805 | 0.438 | -139.789 301.056 |
expression | -17.7517 | 18.762 | -0.946 | 0.364 | -59.047 23.544 |
expression:C(dose)[T.1] | -5.7624 | 22.456 | -0.257 | 0.802 | -55.188 43.663 |
Omnibus: | 2.274 | Durbin-Watson: | 0.746 |
Prob(Omnibus): | 0.321 | Jarque-Bera (JB): | 1.074 |
Skew: | -0.212 | Prob(JB): | 0.584 |
Kurtosis: | 1.759 | Cond. No. | 100. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.607 |
Model: | OLS | Adj. R-squared: | 0.542 |
Method: | Least Squares | F-statistic: | 9.273 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 0.00368 |
Time: | 11:39:10 | Log-Likelihood: | -68.293 |
No. Observations: | 15 | AIC: | 142.6 |
Df Residuals: | 12 | BIC: | 144.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 161.7541 | 43.971 | 3.679 | 0.003 | 65.950 257.558 |
C(dose)[T.1] | 55.1918 | 13.564 | 4.069 | 0.002 | 25.638 84.746 |
expression | -21.7743 | 9.900 | -2.199 | 0.048 | -43.344 -0.204 |
Omnibus: | 3.336 | Durbin-Watson: | 0.749 |
Prob(Omnibus): | 0.189 | Jarque-Bera (JB): | 1.246 |
Skew: | -0.196 | Prob(JB): | 0.536 |
Kurtosis: | 1.644 | Cond. No. | 31.7 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 0.00629 |
Time: | 11:39:10 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.065 |
Model: | OLS | Adj. R-squared: | -0.007 |
Method: | Least Squares | F-statistic: | 0.9057 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 0.359 |
Time: | 11:39:10 | Log-Likelihood: | -74.795 |
No. Observations: | 15 | AIC: | 153.6 |
Df Residuals: | 13 | BIC: | 155.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 154.9335 | 65.121 | 2.379 | 0.033 | 14.248 295.619 |
expression | -13.6793 | 14.373 | -0.952 | 0.359 | -44.731 17.373 |
Omnibus: | 0.727 | Durbin-Watson: | 1.688 |
Prob(Omnibus): | 0.695 | Jarque-Bera (JB): | 0.651 |
Skew: | 0.165 | Prob(JB): | 0.722 |
Kurtosis: | 2.034 | Cond. No. | 31.5 |