AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.434 | 0.517 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.672 |
Model: | OLS | Adj. R-squared: | 0.620 |
Method: | Least Squares | F-statistic: | 12.96 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 7.66e-05 |
Time: | 04:28:49 | Log-Likelihood: | -100.29 |
No. Observations: | 23 | AIC: | 208.6 |
Df Residuals: | 19 | BIC: | 213.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 191.5497 | 645.444 | 0.297 | 0.770 | -1159.380 1542.479 |
C(dose)[T.1] | -789.2078 | 898.630 | -0.878 | 0.391 | -2670.063 1091.647 |
expression | -11.3015 | 53.110 | -0.213 | 0.834 | -122.461 99.858 |
expression:C(dose)[T.1] | 69.9325 | 74.315 | 0.941 | 0.358 | -85.610 225.475 |
Omnibus: | 0.518 | Durbin-Watson: | 1.880 |
Prob(Omnibus): | 0.772 | Jarque-Bera (JB): | 0.593 |
Skew: | 0.086 | Prob(JB): | 0.744 |
Kurtosis: | 2.233 | Cond. No. | 3.28e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.657 |
Model: | OLS | Adj. R-squared: | 0.622 |
Method: | Least Squares | F-statistic: | 19.11 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.29e-05 |
Time: | 04:28:49 | Log-Likelihood: | -100.82 |
No. Observations: | 23 | AIC: | 207.6 |
Df Residuals: | 20 | BIC: | 211.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -242.5037 | 450.197 | -0.539 | 0.596 | -1181.598 696.591 |
C(dose)[T.1] | 56.3813 | 9.829 | 5.736 | 0.000 | 35.879 76.884 |
expression | 24.4157 | 37.042 | 0.659 | 0.517 | -52.853 101.685 |
Omnibus: | 0.415 | Durbin-Watson: | 1.792 |
Prob(Omnibus): | 0.812 | Jarque-Bera (JB): | 0.545 |
Skew: | 0.118 | Prob(JB): | 0.761 |
Kurtosis: | 2.283 | Cond. No. | 1.27e+03 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:28:49 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.091 |
Model: | OLS | Adj. R-squared: | 0.048 |
Method: | Least Squares | F-statistic: | 2.112 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.161 |
Time: | 04:28:49 | Log-Likelihood: | -112.00 |
No. Observations: | 23 | AIC: | 228.0 |
Df Residuals: | 21 | BIC: | 230.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 991.8929 | 627.651 | 1.580 | 0.129 | -313.379 2297.165 |
expression | -75.4308 | 51.899 | -1.453 | 0.161 | -183.362 32.500 |
Omnibus: | 1.693 | Durbin-Watson: | 2.578 |
Prob(Omnibus): | 0.429 | Jarque-Bera (JB): | 1.336 |
Skew: | 0.406 | Prob(JB): | 0.513 |
Kurtosis: | 2.143 | Cond. No. | 1.11e+03 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
7.013 | 0.021 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.660 |
Model: | OLS | Adj. R-squared: | 0.567 |
Method: | Least Squares | F-statistic: | 7.111 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00633 |
Time: | 04:28:49 | Log-Likelihood: | -67.214 |
No. Observations: | 15 | AIC: | 142.4 |
Df Residuals: | 11 | BIC: | 145.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 477.3505 | 847.130 | 0.563 | 0.584 | -1387.169 2341.870 |
C(dose)[T.1] | 491.5018 | 909.910 | 0.540 | 0.600 | -1511.197 2494.200 |
expression | -35.5420 | 73.445 | -0.484 | 0.638 | -197.194 126.110 |
expression:C(dose)[T.1] | -39.4394 | 79.041 | -0.499 | 0.628 | -213.408 134.529 |
Omnibus: | 1.388 | Durbin-Watson: | 0.941 |
Prob(Omnibus): | 0.500 | Jarque-Bera (JB): | 0.865 |
Skew: | -0.569 | Prob(JB): | 0.649 |
Kurtosis: | 2.703 | Cond. No. | 2.53e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.652 |
Model: | OLS | Adj. R-squared: | 0.594 |
Method: | Least Squares | F-statistic: | 11.25 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00177 |
Time: | 04:28:49 | Log-Likelihood: | -67.381 |
No. Observations: | 15 | AIC: | 140.8 |
Df Residuals: | 12 | BIC: | 142.9 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 870.0960 | 303.236 | 2.869 | 0.014 | 209.402 1530.790 |
C(dose)[T.1] | 37.5324 | 13.257 | 2.831 | 0.015 | 8.647 66.418 |
expression | -69.5948 | 26.280 | -2.648 | 0.021 | -126.854 -12.336 |
Omnibus: | 1.858 | Durbin-Watson: | 0.971 |
Prob(Omnibus): | 0.395 | Jarque-Bera (JB): | 1.052 |
Skew: | -0.643 | Prob(JB): | 0.591 |
Kurtosis: | 2.833 | Cond. No. | 561. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:28:49 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.420 |
Model: | OLS | Adj. R-squared: | 0.375 |
Method: | Least Squares | F-statistic: | 9.403 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00901 |
Time: | 04:28:49 | Log-Likelihood: | -71.218 |
No. Observations: | 15 | AIC: | 146.4 |
Df Residuals: | 13 | BIC: | 147.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 1172.9879 | 352.060 | 3.332 | 0.005 | 412.408 1933.568 |
expression | -94.3129 | 30.756 | -3.066 | 0.009 | -160.758 -27.868 |
Omnibus: | 1.958 | Durbin-Watson: | 1.665 |
Prob(Omnibus): | 0.376 | Jarque-Bera (JB): | 0.455 |
Skew: | -0.325 | Prob(JB): | 0.796 |
Kurtosis: | 3.554 | Cond. No. | 525. |