AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.151 | 0.701 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.652 |
Model: | OLS | Adj. R-squared: | 0.597 |
Method: | Least Squares | F-statistic: | 11.88 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000131 |
Time: | 03:49:46 | Log-Likelihood: | -100.96 |
No. Observations: | 23 | AIC: | 209.9 |
Df Residuals: | 19 | BIC: | 214.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 173.1932 | 510.895 | 0.339 | 0.738 | -896.123 1242.509 |
C(dose)[T.1] | 229.7568 | 986.452 | 0.233 | 0.818 | -1834.911 2294.424 |
expression | -10.3264 | 44.336 | -0.233 | 0.818 | -103.123 82.470 |
expression:C(dose)[T.1] | -15.6071 | 86.333 | -0.181 | 0.858 | -196.303 165.089 |
Omnibus: | 0.352 | Durbin-Watson: | 1.910 |
Prob(Omnibus): | 0.838 | Jarque-Bera (JB): | 0.501 |
Skew: | -0.034 | Prob(JB): | 0.778 |
Kurtosis: | 2.280 | Cond. No. | 3.00e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.652 |
Model: | OLS | Adj. R-squared: | 0.617 |
Method: | Least Squares | F-statistic: | 18.71 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.63e-05 |
Time: | 03:49:46 | Log-Likelihood: | -100.98 |
No. Observations: | 23 | AIC: | 208.0 |
Df Residuals: | 20 | BIC: | 211.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 220.6204 | 427.658 | 0.516 | 0.612 | -671.458 1112.699 |
C(dose)[T.1] | 51.4370 | 10.009 | 5.139 | 0.000 | 30.559 72.315 |
expression | -14.4425 | 37.112 | -0.389 | 0.701 | -91.856 62.971 |
Omnibus: | 0.487 | Durbin-Watson: | 1.902 |
Prob(Omnibus): | 0.784 | Jarque-Bera (JB): | 0.570 |
Skew: | -0.014 | Prob(JB): | 0.752 |
Kurtosis: | 2.229 | Cond. No. | 1.13e+03 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:49:46 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.192 |
Model: | OLS | Adj. R-squared: | 0.153 |
Method: | Least Squares | F-statistic: | 4.981 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0367 |
Time: | 03:49:47 | Log-Likelihood: | -110.66 |
No. Observations: | 23 | AIC: | 225.3 |
Df Residuals: | 21 | BIC: | 227.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 1311.4572 | 551.942 | 2.376 | 0.027 | 163.631 2459.284 |
expression | -107.4864 | 48.161 | -2.232 | 0.037 | -207.643 -7.330 |
Omnibus: | 3.924 | Durbin-Watson: | 2.566 |
Prob(Omnibus): | 0.141 | Jarque-Bera (JB): | 1.556 |
Skew: | 0.197 | Prob(JB): | 0.459 |
Kurtosis: | 1.788 | Cond. No. | 982. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
8.392 | 0.013 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.678 |
Model: | OLS | Adj. R-squared: | 0.590 |
Method: | Least Squares | F-statistic: | 7.707 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00476 |
Time: | 03:49:47 | Log-Likelihood: | -66.810 |
No. Observations: | 15 | AIC: | 141.6 |
Df Residuals: | 11 | BIC: | 144.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 1083.3595 | 536.825 | 2.018 | 0.069 | -98.184 2264.903 |
C(dose)[T.1] | -130.1834 | 673.670 | -0.193 | 0.850 | -1612.921 1352.554 |
expression | -90.4418 | 47.783 | -1.893 | 0.085 | -195.612 14.728 |
expression:C(dose)[T.1] | 15.7172 | 60.036 | 0.262 | 0.798 | -116.421 147.856 |
Omnibus: | 1.130 | Durbin-Watson: | 1.471 |
Prob(Omnibus): | 0.568 | Jarque-Bera (JB): | 0.648 |
Skew: | -0.494 | Prob(JB): | 0.723 |
Kurtosis: | 2.752 | Cond. No. | 1.71e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.676 |
Model: | OLS | Adj. R-squared: | 0.622 |
Method: | Least Squares | F-statistic: | 12.50 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00116 |
Time: | 03:49:47 | Log-Likelihood: | -66.856 |
No. Observations: | 15 | AIC: | 139.7 |
Df Residuals: | 12 | BIC: | 141.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 971.5207 | 312.216 | 3.112 | 0.009 | 291.261 1651.780 |
C(dose)[T.1] | 46.1494 | 12.120 | 3.808 | 0.002 | 19.742 72.556 |
expression | -80.4855 | 27.783 | -2.897 | 0.013 | -141.020 -19.951 |
Omnibus: | 1.590 | Durbin-Watson: | 1.364 |
Prob(Omnibus): | 0.452 | Jarque-Bera (JB): | 0.756 |
Skew: | -0.549 | Prob(JB): | 0.685 |
Kurtosis: | 2.945 | Cond. No. | 587. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:49:47 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.284 |
Model: | OLS | Adj. R-squared: | 0.229 |
Method: | Least Squares | F-statistic: | 5.149 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0409 |
Time: | 03:49:47 | Log-Likelihood: | -72.798 |
No. Observations: | 15 | AIC: | 149.6 |
Df Residuals: | 13 | BIC: | 151.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 1099.0814 | 443.183 | 2.480 | 0.028 | 141.644 2056.519 |
expression | -89.6668 | 39.517 | -2.269 | 0.041 | -175.039 -4.295 |
Omnibus: | 2.343 | Durbin-Watson: | 2.043 |
Prob(Omnibus): | 0.310 | Jarque-Bera (JB): | 1.311 |
Skew: | 0.422 | Prob(JB): | 0.519 |
Kurtosis: | 1.824 | Cond. No. | 583. |