AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.003 0.953 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.665
Model: OLS Adj. R-squared: 0.612
Method: Least Squares F-statistic: 12.57
Date: Thu, 21 Nov 2024 Prob (F-statistic): 9.28e-05
Time: 04:04:44 Log-Likelihood: -100.53
No. Observations: 23 AIC: 209.1
Df Residuals: 19 BIC: 213.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 106.8627 93.365 1.145 0.267 -88.552 302.278
C(dose)[T.1] -88.7266 149.881 -0.592 0.561 -402.430 224.977
expression -7.8949 13.969 -0.565 0.579 -37.133 21.343
expression:C(dose)[T.1] 20.5811 21.705 0.948 0.355 -24.847 66.009
Omnibus: 0.039 Durbin-Watson: 2.030
Prob(Omnibus): 0.981 Jarque-Bera (JB): 0.246
Skew: -0.048 Prob(JB): 0.884
Kurtosis: 2.502 Cond. No. 299.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 18.50
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.83e-05
Time: 04:04:44 Log-Likelihood: -101.06
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 50.0042 71.384 0.700 0.492 -98.900 198.908
C(dose)[T.1] 53.0986 9.653 5.501 0.000 32.963 73.234
expression 0.6304 10.664 0.059 0.953 -21.615 22.876
Omnibus: 0.304 Durbin-Watson: 1.898
Prob(Omnibus): 0.859 Jarque-Bera (JB): 0.475
Skew: 0.062 Prob(JB): 0.789
Kurtosis: 2.307 Cond. No. 115.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:04:44 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.118
Model: OLS Adj. R-squared: 0.076
Method: Least Squares F-statistic: 2.816
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.108
Time: 04:04:44 Log-Likelihood: -111.66
No. Observations: 23 AIC: 227.3
Df Residuals: 21 BIC: 229.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -92.5869 102.894 -0.900 0.378 -306.566 121.392
expression 25.1525 14.988 1.678 0.108 -6.016 56.321
Omnibus: 1.944 Durbin-Watson: 2.566
Prob(Omnibus): 0.378 Jarque-Bera (JB): 1.056
Skew: 0.050 Prob(JB): 0.590
Kurtosis: 1.955 Cond. No. 106.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
3.313 0.094 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.569
Model: OLS Adj. R-squared: 0.451
Method: Least Squares F-statistic: 4.841
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0219
Time: 04:04:44 Log-Likelihood: -68.988
No. Observations: 15 AIC: 146.0
Df Residuals: 11 BIC: 148.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -144.9769 134.989 -1.074 0.306 -442.085 152.132
C(dose)[T.1] 93.7744 259.101 0.362 0.724 -476.503 664.052
expression 35.6034 22.557 1.578 0.143 -14.044 85.250
expression:C(dose)[T.1] -6.8776 44.032 -0.156 0.879 -103.792 90.037
Omnibus: 3.360 Durbin-Watson: 1.520
Prob(Omnibus): 0.186 Jarque-Bera (JB): 2.047
Skew: -0.904 Prob(JB): 0.359
Kurtosis: 2.903 Cond. No. 262.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.568
Model: OLS Adj. R-squared: 0.496
Method: Least Squares F-statistic: 7.890
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00650
Time: 04:04:44 Log-Likelihood: -69.004
No. Observations: 15 AIC: 144.0
Df Residuals: 12 BIC: 146.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -134.2093 111.241 -1.206 0.251 -376.583 108.164
C(dose)[T.1] 53.3698 14.121 3.780 0.003 22.604 84.136
expression 33.7985 18.568 1.820 0.094 -6.658 74.255
Omnibus: 3.555 Durbin-Watson: 1.467
Prob(Omnibus): 0.169 Jarque-Bera (JB): 2.183
Skew: -0.934 Prob(JB): 0.336
Kurtosis: 2.912 Cond. No. 97.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:04:44 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.054
Model: OLS Adj. R-squared: -0.019
Method: Least Squares F-statistic: 0.7395
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.405
Time: 04:04:44 Log-Likelihood: -74.885
No. Observations: 15 AIC: 153.8
Df Residuals: 13 BIC: 155.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -38.5142 154.027 -0.250 0.806 -371.270 294.242
expression 22.4035 26.052 0.860 0.405 -33.879 78.686
Omnibus: 3.379 Durbin-Watson: 1.867
Prob(Omnibus): 0.185 Jarque-Bera (JB): 1.350
Skew: 0.301 Prob(JB): 0.509
Kurtosis: 1.659 Cond. No. 94.8