AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.345 | 0.564 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.656 |
Model: | OLS | Adj. R-squared: | 0.602 |
Method: | Least Squares | F-statistic: | 12.09 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.000118 |
Time: | 22:50:43 | Log-Likelihood: | -100.83 |
No. Observations: | 23 | AIC: | 209.7 |
Df Residuals: | 19 | BIC: | 214.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 114.4220 | 99.153 | 1.154 | 0.263 | -93.107 321.951 |
C(dose)[T.1] | 11.8189 | 160.883 | 0.073 | 0.942 | -324.914 348.552 |
expression | -10.3936 | 17.082 | -0.608 | 0.550 | -46.146 25.359 |
expression:C(dose)[T.1] | 7.0851 | 28.164 | 0.252 | 0.804 | -51.863 66.033 |
Omnibus: | 0.278 | Durbin-Watson: | 1.800 |
Prob(Omnibus): | 0.870 | Jarque-Bera (JB): | 0.458 |
Skew: | 0.064 | Prob(JB): | 0.795 |
Kurtosis: | 2.320 | Cond. No. | 262. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.655 |
Model: | OLS | Adj. R-squared: | 0.621 |
Method: | Least Squares | F-statistic: | 18.99 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 2.39e-05 |
Time: | 22:50:43 | Log-Likelihood: | -100.87 |
No. Observations: | 23 | AIC: | 207.7 |
Df Residuals: | 20 | BIC: | 211.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 99.3227 | 77.052 | 1.289 | 0.212 | -61.404 260.050 |
C(dose)[T.1] | 52.2264 | 8.898 | 5.869 | 0.000 | 33.665 70.788 |
expression | -7.7873 | 13.260 | -0.587 | 0.564 | -35.446 19.872 |
Omnibus: | 0.316 | Durbin-Watson: | 1.842 |
Prob(Omnibus): | 0.854 | Jarque-Bera (JB): | 0.483 |
Skew: | 0.088 | Prob(JB): | 0.785 |
Kurtosis: | 2.312 | Cond. No. | 105. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 22:50:43 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.061 |
Model: | OLS | Adj. R-squared: | 0.016 |
Method: | Least Squares | F-statistic: | 1.360 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.257 |
Time: | 22:50:43 | Log-Likelihood: | -112.38 |
No. Observations: | 23 | AIC: | 228.8 |
Df Residuals: | 21 | BIC: | 231.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 218.9907 | 119.645 | 1.830 | 0.081 | -29.825 467.807 |
expression | -24.3267 | 20.863 | -1.166 | 0.257 | -67.713 19.059 |
Omnibus: | 2.028 | Durbin-Watson: | 2.234 |
Prob(Omnibus): | 0.363 | Jarque-Bera (JB): | 1.351 |
Skew: | 0.343 | Prob(JB): | 0.509 |
Kurtosis: | 2.031 | Cond. No. | 101. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
4.313 | 0.060 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.598 |
Model: | OLS | Adj. R-squared: | 0.488 |
Method: | Least Squares | F-statistic: | 5.444 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0153 |
Time: | 22:50:43 | Log-Likelihood: | -68.474 |
No. Observations: | 15 | AIC: | 144.9 |
Df Residuals: | 11 | BIC: | 147.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 395.2035 | 210.389 | 1.878 | 0.087 | -67.859 858.266 |
C(dose)[T.1] | -19.3397 | 292.447 | -0.066 | 0.948 | -663.011 624.331 |
expression | -61.1511 | 39.204 | -1.560 | 0.147 | -147.439 25.137 |
expression:C(dose)[T.1] | 15.2600 | 53.171 | 0.287 | 0.779 | -101.768 132.288 |
Omnibus: | 0.089 | Durbin-Watson: | 1.407 |
Prob(Omnibus): | 0.957 | Jarque-Bera (JB): | 0.131 |
Skew: | 0.112 | Prob(JB): | 0.937 |
Kurtosis: | 2.601 | Cond. No. | 323. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.595 |
Model: | OLS | Adj. R-squared: | 0.527 |
Method: | Least Squares | F-statistic: | 8.797 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00445 |
Time: | 22:50:43 | Log-Likelihood: | -68.530 |
No. Observations: | 15 | AIC: | 143.1 |
Df Residuals: | 12 | BIC: | 145.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 350.7351 | 136.775 | 2.564 | 0.025 | 52.727 648.743 |
C(dose)[T.1] | 64.4672 | 15.372 | 4.194 | 0.001 | 30.974 97.961 |
expression | -52.8549 | 25.451 | -2.077 | 0.060 | -108.308 2.598 |
Omnibus: | 0.284 | Durbin-Watson: | 1.422 |
Prob(Omnibus): | 0.867 | Jarque-Bera (JB): | 0.148 |
Skew: | 0.198 | Prob(JB): | 0.929 |
Kurtosis: | 2.718 | Cond. No. | 117. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 22:50:44 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.000 |
Model: | OLS | Adj. R-squared: | -0.077 |
Method: | Least Squares | F-statistic: | 0.002848 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.958 |
Time: | 22:50:44 | Log-Likelihood: | -75.298 |
No. Observations: | 15 | AIC: | 154.6 |
Df Residuals: | 13 | BIC: | 156.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 103.5890 | 186.206 | 0.556 | 0.587 | -298.684 505.862 |
expression | -1.7994 | 33.718 | -0.053 | 0.958 | -74.643 71.044 |
Omnibus: | 0.680 | Durbin-Watson: | 1.630 |
Prob(Omnibus): | 0.712 | Jarque-Bera (JB): | 0.612 |
Skew: | 0.072 | Prob(JB): | 0.736 |
Kurtosis: | 2.021 | Cond. No. | 105. |