AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.407 | 0.531 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.656 |
Model: | OLS | Adj. R-squared: | 0.602 |
Method: | Least Squares | F-statistic: | 12.10 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.000118 |
Time: | 18:34:34 | Log-Likelihood: | -100.82 |
No. Observations: | 23 | AIC: | 209.6 |
Df Residuals: | 19 | BIC: | 214.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 151.4334 | 165.403 | 0.916 | 0.371 | -194.760 497.627 |
C(dose)[T.1] | 17.2002 | 304.409 | 0.057 | 0.956 | -619.936 654.336 |
expression | -11.5201 | 19.585 | -0.588 | 0.563 | -52.512 29.472 |
expression:C(dose)[T.1] | 4.4861 | 35.340 | 0.127 | 0.900 | -69.480 78.453 |
Omnibus: | 1.235 | Durbin-Watson: | 1.708 |
Prob(Omnibus): | 0.539 | Jarque-Bera (JB): | 0.854 |
Skew: | -0.008 | Prob(JB): | 0.653 |
Kurtosis: | 2.056 | Cond. No. | 713. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.656 |
Model: | OLS | Adj. R-squared: | 0.622 |
Method: | Least Squares | F-statistic: | 19.07 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 2.32e-05 |
Time: | 18:34:34 | Log-Likelihood: | -100.83 |
No. Observations: | 23 | AIC: | 207.7 |
Df Residuals: | 20 | BIC: | 211.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 139.8053 | 134.292 | 1.041 | 0.310 | -140.323 419.933 |
C(dose)[T.1] | 55.8229 | 9.516 | 5.866 | 0.000 | 35.973 75.673 |
expression | -10.1423 | 15.896 | -0.638 | 0.531 | -43.301 23.017 |
Omnibus: | 1.301 | Durbin-Watson: | 1.714 |
Prob(Omnibus): | 0.522 | Jarque-Bera (JB): | 0.874 |
Skew: | -0.005 | Prob(JB): | 0.646 |
Kurtosis: | 2.045 | Cond. No. | 269. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 18:34:34 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.064 |
Model: | OLS | Adj. R-squared: | 0.020 |
Method: | Least Squares | F-statistic: | 1.442 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.243 |
Time: | 18:34:34 | Log-Likelihood: | -112.34 |
No. Observations: | 23 | AIC: | 228.7 |
Df Residuals: | 21 | BIC: | 231.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -160.1824 | 199.880 | -0.801 | 0.432 | -575.855 255.490 |
expression | 28.0361 | 23.345 | 1.201 | 0.243 | -20.512 76.584 |
Omnibus: | 1.545 | Durbin-Watson: | 2.486 |
Prob(Omnibus): | 0.462 | Jarque-Bera (JB): | 1.136 |
Skew: | 0.298 | Prob(JB): | 0.567 |
Kurtosis: | 2.088 | Cond. No. | 248. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.049 | 0.829 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.452 |
Model: | OLS | Adj. R-squared: | 0.303 |
Method: | Least Squares | F-statistic: | 3.027 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.0753 |
Time: | 18:34:34 | Log-Likelihood: | -70.786 |
No. Observations: | 15 | AIC: | 149.6 |
Df Residuals: | 11 | BIC: | 152.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -26.0038 | 376.107 | -0.069 | 0.946 | -853.811 801.803 |
C(dose)[T.1] | 119.9245 | 461.358 | 0.260 | 0.800 | -895.518 1135.367 |
expression | 11.6466 | 46.859 | 0.249 | 0.808 | -91.489 114.783 |
expression:C(dose)[T.1] | -8.8787 | 57.053 | -0.156 | 0.879 | -134.450 116.693 |
Omnibus: | 2.660 | Durbin-Watson: | 0.738 |
Prob(Omnibus): | 0.264 | Jarque-Bera (JB): | 1.861 |
Skew: | -0.837 | Prob(JB): | 0.394 |
Kurtosis: | 2.584 | Cond. No. | 669. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.451 |
Model: | OLS | Adj. R-squared: | 0.360 |
Method: | Least Squares | F-statistic: | 4.929 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.0274 |
Time: | 18:34:34 | Log-Likelihood: | -70.803 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 12 | BIC: | 149.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 22.0451 | 205.859 | 0.107 | 0.916 | -426.483 470.573 |
C(dose)[T.1] | 48.1759 | 16.374 | 2.942 | 0.012 | 12.501 83.851 |
expression | 5.6572 | 25.621 | 0.221 | 0.829 | -50.166 61.480 |
Omnibus: | 2.812 | Durbin-Watson: | 0.735 |
Prob(Omnibus): | 0.245 | Jarque-Bera (JB): | 1.976 |
Skew: | -0.864 | Prob(JB): | 0.372 |
Kurtosis: | 2.579 | Cond. No. | 217. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.00629 |
Time: | 18:34:34 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.055 |
Model: | OLS | Adj. R-squared: | -0.018 |
Method: | Least Squares | F-statistic: | 0.7558 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.400 |
Time: | 18:34:34 | Log-Likelihood: | -74.876 |
No. Observations: | 15 | AIC: | 153.8 |
Df Residuals: | 13 | BIC: | 155.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -125.0130 | 251.733 | -0.497 | 0.628 | -668.848 418.822 |
expression | 26.9359 | 30.983 | 0.869 | 0.400 | -40.000 93.871 |
Omnibus: | 1.100 | Durbin-Watson: | 1.485 |
Prob(Omnibus): | 0.577 | Jarque-Bera (JB): | 0.745 |
Skew: | 0.085 | Prob(JB): | 0.689 |
Kurtosis: | 1.922 | Cond. No. | 210. |