AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.081 0.779 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.673
Model: OLS Adj. R-squared: 0.621
Method: Least Squares F-statistic: 13.01
Date: Thu, 21 Nov 2024 Prob (F-statistic): 7.49e-05
Time: 05:24:00 Log-Likelihood: -100.26
No. Observations: 23 AIC: 208.5
Df Residuals: 19 BIC: 213.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 180.1915 117.402 1.535 0.141 -65.533 425.916
C(dose)[T.1] -115.5571 149.944 -0.771 0.450 -429.394 198.280
expression -27.8292 25.900 -1.075 0.296 -82.038 26.379
expression:C(dose)[T.1] 36.9638 32.607 1.134 0.271 -31.284 105.212
Omnibus: 0.047 Durbin-Watson: 1.714
Prob(Omnibus): 0.977 Jarque-Bera (JB): 0.255
Skew: -0.055 Prob(JB): 0.881
Kurtosis: 2.497 Cond. No. 230.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.650
Model: OLS Adj. R-squared: 0.616
Method: Least Squares F-statistic: 18.61
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.72e-05
Time: 05:24:00 Log-Likelihood: -101.02
No. Observations: 23 AIC: 208.0
Df Residuals: 20 BIC: 211.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 74.6212 71.994 1.036 0.312 -75.556 224.798
C(dose)[T.1] 54.1065 9.160 5.907 0.000 34.998 73.215
expression -4.5091 15.847 -0.285 0.779 -37.565 28.547
Omnibus: 0.206 Durbin-Watson: 1.911
Prob(Omnibus): 0.902 Jarque-Bera (JB): 0.409
Skew: 0.071 Prob(JB): 0.815
Kurtosis: 2.362 Cond. No. 80.1

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:24:00 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.041
Model: OLS Adj. R-squared: -0.005
Method: Least Squares F-statistic: 0.8922
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.356
Time: 05:24:00 Log-Likelihood: -112.63
No. Observations: 23 AIC: 229.3
Df Residuals: 21 BIC: 231.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -26.8387 113.031 -0.237 0.815 -261.900 208.222
expression 23.1210 24.478 0.945 0.356 -27.784 74.026
Omnibus: 3.014 Durbin-Watson: 2.297
Prob(Omnibus): 0.222 Jarque-Bera (JB): 1.353
Skew: 0.161 Prob(JB): 0.508
Kurtosis: 1.856 Cond. No. 77.3

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
2.179 0.166 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.534
Model: OLS Adj. R-squared: 0.407
Method: Least Squares F-statistic: 4.209
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0328
Time: 05:24:01 Log-Likelihood: -69.567
No. Observations: 15 AIC: 147.1
Df Residuals: 11 BIC: 150.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -116.6010 193.507 -0.603 0.559 -542.508 309.306
C(dose)[T.1] 85.2074 239.128 0.356 0.728 -441.110 611.525
expression 34.1016 35.800 0.953 0.361 -44.693 112.896
expression:C(dose)[T.1] -6.5406 44.297 -0.148 0.885 -104.037 90.956
Omnibus: 1.098 Durbin-Watson: 1.498
Prob(Omnibus): 0.578 Jarque-Bera (JB): 0.941
Skew: -0.432 Prob(JB): 0.625
Kurtosis: 2.130 Cond. No. 252.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.533
Model: OLS Adj. R-squared: 0.456
Method: Least Squares F-statistic: 6.862
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0103
Time: 05:24:01 Log-Likelihood: -69.581
No. Observations: 15 AIC: 145.2
Df Residuals: 12 BIC: 147.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -93.5474 109.555 -0.854 0.410 -332.247 145.152
C(dose)[T.1] 49.9701 14.489 3.449 0.005 18.401 81.539
expression 29.8297 20.206 1.476 0.166 -14.196 73.855
Omnibus: 0.967 Durbin-Watson: 1.466
Prob(Omnibus): 0.617 Jarque-Bera (JB): 0.868
Skew: -0.417 Prob(JB): 0.648
Kurtosis: 2.168 Cond. No. 85.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:24:01 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.071
Model: OLS Adj. R-squared: -0.000
Method: Least Squares F-statistic: 0.9951
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.337
Time: 05:24:01 Log-Likelihood: -74.747
No. Observations: 15 AIC: 153.5
Df Residuals: 13 BIC: 154.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -53.3298 147.684 -0.361 0.724 -372.381 265.721
expression 27.3092 27.376 0.998 0.337 -31.834 86.453
Omnibus: 0.436 Durbin-Watson: 1.946
Prob(Omnibus): 0.804 Jarque-Bera (JB): 0.538
Skew: 0.269 Prob(JB): 0.764
Kurtosis: 2.244 Cond. No. 84.1