AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.146 0.297 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.680
Model: OLS Adj. R-squared: 0.629
Method: Least Squares F-statistic: 13.43
Date: Thu, 21 Nov 2024 Prob (F-statistic): 6.13e-05
Time: 04:03:50 Log-Likelihood: -100.02
No. Observations: 23 AIC: 208.0
Df Residuals: 19 BIC: 212.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 72.9491 64.913 1.124 0.275 -62.916 208.814
C(dose)[T.1] 139.8138 103.248 1.354 0.192 -76.287 355.914
expression -2.9101 10.037 -0.290 0.775 -23.919 18.098
expression:C(dose)[T.1] -13.0086 15.730 -0.827 0.418 -45.931 19.914
Omnibus: 0.930 Durbin-Watson: 2.152
Prob(Omnibus): 0.628 Jarque-Bera (JB): 0.919
Skew: 0.358 Prob(JB): 0.632
Kurtosis: 2.332 Cond. No. 201.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.668
Model: OLS Adj. R-squared: 0.635
Method: Least Squares F-statistic: 20.13
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.62e-05
Time: 04:03:50 Log-Likelihood: -100.42
No. Observations: 23 AIC: 206.8
Df Residuals: 20 BIC: 210.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 107.0617 49.725 2.153 0.044 3.337 210.787
C(dose)[T.1] 54.7304 8.628 6.344 0.000 36.733 72.727
expression -8.2071 7.667 -1.070 0.297 -24.200 7.786
Omnibus: 0.833 Durbin-Watson: 2.149
Prob(Omnibus): 0.659 Jarque-Bera (JB): 0.772
Skew: 0.188 Prob(JB): 0.680
Kurtosis: 2.184 Cond. No. 78.4

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:03:50 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.047
Method: Least Squares F-statistic: 0.004594
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.947
Time: 04:03:50 Log-Likelihood: -113.10
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 85.3914 84.021 1.016 0.321 -89.339 260.122
expression -0.8701 12.837 -0.068 0.947 -27.566 25.826
Omnibus: 3.374 Durbin-Watson: 2.503
Prob(Omnibus): 0.185 Jarque-Bera (JB): 1.579
Skew: 0.287 Prob(JB): 0.454
Kurtosis: 1.851 Cond. No. 78.0

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.123 0.310 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.570
Model: OLS Adj. R-squared: 0.453
Method: Least Squares F-statistic: 4.864
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0216
Time: 04:03:50 Log-Likelihood: -68.967
No. Observations: 15 AIC: 145.9
Df Residuals: 11 BIC: 148.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 270.0708 125.060 2.160 0.054 -5.185 545.327
C(dose)[T.1] -299.8924 249.074 -1.204 0.254 -848.100 248.315
expression -24.2824 14.932 -1.626 0.132 -57.147 8.583
expression:C(dose)[T.1] 42.8189 31.060 1.379 0.195 -25.544 111.182
Omnibus: 2.561 Durbin-Watson: 1.398
Prob(Omnibus): 0.278 Jarque-Bera (JB): 0.927
Skew: -0.568 Prob(JB): 0.629
Kurtosis: 3.439 Cond. No. 338.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.496
Model: OLS Adj. R-squared: 0.412
Method: Least Squares F-statistic: 5.903
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0164
Time: 04:03:50 Log-Likelihood: -70.162
No. Observations: 15 AIC: 146.3
Df Residuals: 12 BIC: 148.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 187.4863 113.823 1.647 0.125 -60.514 435.486
C(dose)[T.1] 42.7981 16.217 2.639 0.022 7.464 78.132
expression -14.3864 13.576 -1.060 0.310 -43.965 15.192
Omnibus: 3.128 Durbin-Watson: 0.991
Prob(Omnibus): 0.209 Jarque-Bera (JB): 1.960
Skew: -0.881 Prob(JB): 0.375
Kurtosis: 2.827 Cond. No. 126.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:03:50 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.203
Model: OLS Adj. R-squared: 0.142
Method: Least Squares F-statistic: 3.319
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0916
Time: 04:03:50 Log-Likelihood: -73.595
No. Observations: 15 AIC: 151.2
Df Residuals: 13 BIC: 152.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 318.4632 123.722 2.574 0.023 51.179 585.748
expression -27.7252 15.218 -1.822 0.092 -60.602 5.152
Omnibus: 4.921 Durbin-Watson: 1.989
Prob(Omnibus): 0.085 Jarque-Bera (JB): 1.715
Skew: 0.408 Prob(JB): 0.424
Kurtosis: 1.558 Cond. No. 113.