AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.005 | 0.943 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.658 |
Model: | OLS | Adj. R-squared: | 0.604 |
Method: | Least Squares | F-statistic: | 12.20 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000112 |
Time: | 03:41:09 | Log-Likelihood: | -100.76 |
No. Observations: | 23 | AIC: | 209.5 |
Df Residuals: | 19 | BIC: | 214.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 104.1870 | 98.879 | 1.054 | 0.305 | -102.769 311.143 |
C(dose)[T.1] | -53.8272 | 150.787 | -0.357 | 0.725 | -369.429 261.774 |
expression | -8.1105 | 16.015 | -0.506 | 0.618 | -41.630 25.409 |
expression:C(dose)[T.1] | 17.9099 | 25.216 | 0.710 | 0.486 | -34.867 70.687 |
Omnibus: | 0.825 | Durbin-Watson: | 1.722 |
Prob(Omnibus): | 0.662 | Jarque-Bera (JB): | 0.721 |
Skew: | 0.070 | Prob(JB): | 0.697 |
Kurtosis: | 2.144 | Cond. No. | 261. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.50 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.83e-05 |
Time: | 03:41:09 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 59.6681 | 75.521 | 0.790 | 0.439 | -97.867 217.203 |
C(dose)[T.1] | 53.0478 | 9.633 | 5.507 | 0.000 | 32.953 73.143 |
expression | -0.8860 | 12.216 | -0.073 | 0.943 | -26.368 24.596 |
Omnibus: | 0.311 | Durbin-Watson: | 1.889 |
Prob(Omnibus): | 0.856 | Jarque-Bera (JB): | 0.478 |
Skew: | 0.049 | Prob(JB): | 0.787 |
Kurtosis: | 2.301 | Cond. No. | 107. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:41:09 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.117 |
Model: | OLS | Adj. R-squared: | 0.075 |
Method: | Least Squares | F-statistic: | 2.788 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.110 |
Time: | 03:41:09 | Log-Likelihood: | -111.67 |
No. Observations: | 23 | AIC: | 227.3 |
Df Residuals: | 21 | BIC: | 229.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 252.3366 | 103.605 | 2.436 | 0.024 | 36.879 467.794 |
expression | -28.7410 | 17.213 | -1.670 | 0.110 | -64.538 7.056 |
Omnibus: | 3.199 | Durbin-Watson: | 2.288 |
Prob(Omnibus): | 0.202 | Jarque-Bera (JB): | 1.491 |
Skew: | 0.250 | Prob(JB): | 0.475 |
Kurtosis: | 1.857 | Cond. No. | 94.5 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.477 | 0.503 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.646 |
Model: | OLS | Adj. R-squared: | 0.549 |
Method: | Least Squares | F-statistic: | 6.682 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00784 |
Time: | 03:41:09 | Log-Likelihood: | -67.518 |
No. Observations: | 15 | AIC: | 143.0 |
Df Residuals: | 11 | BIC: | 145.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -57.4794 | 116.827 | -0.492 | 0.632 | -314.615 199.656 |
C(dose)[T.1] | 474.6616 | 178.693 | 2.656 | 0.022 | 81.360 867.963 |
expression | 19.7782 | 18.436 | 1.073 | 0.306 | -20.799 60.355 |
expression:C(dose)[T.1] | -61.1177 | 26.158 | -2.337 | 0.039 | -118.690 -3.545 |
Omnibus: | 1.203 | Durbin-Watson: | 0.914 |
Prob(Omnibus): | 0.548 | Jarque-Bera (JB): | 0.772 |
Skew: | 0.082 | Prob(JB): | 0.680 |
Kurtosis: | 1.901 | Cond. No. | 253. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.470 |
Model: | OLS | Adj. R-squared: | 0.382 |
Method: | Least Squares | F-statistic: | 5.318 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0222 |
Time: | 03:41:09 | Log-Likelihood: | -70.540 |
No. Observations: | 15 | AIC: | 147.1 |
Df Residuals: | 12 | BIC: | 149.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 134.2553 | 97.388 | 1.379 | 0.193 | -77.935 346.445 |
C(dose)[T.1] | 59.3023 | 21.266 | 2.789 | 0.016 | 12.967 105.637 |
expression | -10.5815 | 15.317 | -0.691 | 0.503 | -43.954 22.791 |
Omnibus: | 2.313 | Durbin-Watson: | 0.990 |
Prob(Omnibus): | 0.315 | Jarque-Bera (JB): | 1.621 |
Skew: | -0.776 | Prob(JB): | 0.445 |
Kurtosis: | 2.572 | Cond. No. | 89.8 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:41:09 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.126 |
Model: | OLS | Adj. R-squared: | 0.059 |
Method: | Least Squares | F-statistic: | 1.880 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.194 |
Time: | 03:41:09 | Log-Likelihood: | -74.287 |
No. Observations: | 15 | AIC: | 152.6 |
Df Residuals: | 13 | BIC: | 154.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -34.6341 | 94.064 | -0.368 | 0.719 | -237.846 168.578 |
expression | 18.7992 | 13.712 | 1.371 | 0.194 | -10.824 48.423 |
Omnibus: | 0.694 | Durbin-Watson: | 1.036 |
Prob(Omnibus): | 0.707 | Jarque-Bera (JB): | 0.620 |
Skew: | 0.091 | Prob(JB): | 0.733 |
Kurtosis: | 2.021 | Cond. No. | 69.4 |