AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.005 0.945 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.653
Model: OLS Adj. R-squared: 0.598
Method: Least Squares F-statistic: 11.90
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000130
Time: 04:13:19 Log-Likelihood: -100.94
No. Observations: 23 AIC: 209.9
Df Residuals: 19 BIC: 214.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 12.4463 112.918 0.110 0.913 -223.894 248.787
C(dose)[T.1] 120.2370 151.943 0.791 0.439 -197.784 438.258
expression 5.5044 14.861 0.370 0.715 -25.600 36.608
expression:C(dose)[T.1] -8.8971 20.208 -0.440 0.665 -51.192 33.398
Omnibus: 0.306 Durbin-Watson: 1.973
Prob(Omnibus): 0.858 Jarque-Bera (JB): 0.475
Skew: 0.056 Prob(JB): 0.788
Kurtosis: 2.305 Cond. No. 343.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 18.50
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.83e-05
Time: 04:13:19 Log-Likelihood: -101.06
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 48.9525 75.092 0.652 0.522 -107.686 205.591
C(dose)[T.1] 53.4601 8.942 5.979 0.000 34.808 72.112
expression 0.6927 9.865 0.070 0.945 -19.885 21.271
Omnibus: 0.335 Durbin-Watson: 1.899
Prob(Omnibus): 0.846 Jarque-Bera (JB): 0.493
Skew: 0.061 Prob(JB): 0.782
Kurtosis: 2.293 Cond. No. 131.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:13:19 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.022
Model: OLS Adj. R-squared: -0.024
Method: Least Squares F-statistic: 0.4743
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.499
Time: 04:13:19 Log-Likelihood: -112.85
No. Observations: 23 AIC: 229.7
Df Residuals: 21 BIC: 232.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 161.1510 118.461 1.360 0.188 -85.203 407.505
expression -10.8548 15.762 -0.689 0.499 -43.633 21.924
Omnibus: 2.495 Durbin-Watson: 2.479
Prob(Omnibus): 0.287 Jarque-Bera (JB): 1.344
Skew: 0.254 Prob(JB): 0.511
Kurtosis: 1.930 Cond. No. 127.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
5.658 0.035 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.648
Model: OLS Adj. R-squared: 0.552
Method: Least Squares F-statistic: 6.753
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00757
Time: 04:13:19 Log-Likelihood: -67.467
No. Observations: 15 AIC: 142.9
Df Residuals: 11 BIC: 145.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -435.6814 284.926 -1.529 0.154 -1062.799 191.436
C(dose)[T.1] 320.8792 313.825 1.022 0.329 -369.846 1011.604
expression 69.2288 39.184 1.767 0.105 -17.015 155.472
expression:C(dose)[T.1] -36.5236 43.352 -0.842 0.417 -131.940 58.892
Omnibus: 0.691 Durbin-Watson: 1.275
Prob(Omnibus): 0.708 Jarque-Bera (JB): 0.428
Skew: 0.383 Prob(JB): 0.807
Kurtosis: 2.688 Cond. No. 534.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.625
Model: OLS Adj. R-squared: 0.563
Method: Least Squares F-statistic: 10.02
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00276
Time: 04:13:19 Log-Likelihood: -67.936
No. Observations: 15 AIC: 141.9
Df Residuals: 12 BIC: 144.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -218.8312 120.716 -1.813 0.095 -481.849 44.186
C(dose)[T.1] 56.7273 13.356 4.247 0.001 27.627 85.827
expression 39.3898 16.559 2.379 0.035 3.310 75.470
Omnibus: 1.192 Durbin-Watson: 1.167
Prob(Omnibus): 0.551 Jarque-Bera (JB): 0.706
Skew: 0.515 Prob(JB): 0.703
Kurtosis: 2.735 Cond. No. 137.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:13:19 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.062
Model: OLS Adj. R-squared: -0.010
Method: Least Squares F-statistic: 0.8629
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.370
Time: 04:13:19 Log-Likelihood: -74.818
No. Observations: 15 AIC: 153.6
Df Residuals: 13 BIC: 155.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -69.1106 175.506 -0.394 0.700 -448.268 310.047
expression 22.7172 24.455 0.929 0.370 -30.115 75.549
Omnibus: 0.526 Durbin-Watson: 1.714
Prob(Omnibus): 0.769 Jarque-Bera (JB): 0.587
Skew: 0.327 Prob(JB): 0.746
Kurtosis: 2.285 Cond. No. 130.