AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.143 | 0.709 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.743 |
Model: | OLS | Adj. R-squared: | 0.702 |
Method: | Least Squares | F-statistic: | 18.28 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 7.94e-06 |
Time: | 04:47:34 | Log-Likelihood: | -97.495 |
No. Observations: | 23 | AIC: | 203.0 |
Df Residuals: | 19 | BIC: | 207.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -132.8405 | 190.930 | -0.696 | 0.495 | -532.461 266.780 |
C(dose)[T.1] | 1048.1084 | 382.256 | 2.742 | 0.013 | 248.038 1848.178 |
expression | 16.5774 | 16.915 | 0.980 | 0.339 | -18.826 51.980 |
expression:C(dose)[T.1] | -84.5134 | 32.583 | -2.594 | 0.018 | -152.711 -16.316 |
Omnibus: | 1.097 | Durbin-Watson: | 1.601 |
Prob(Omnibus): | 0.578 | Jarque-Bera (JB): | 1.012 |
Skew: | 0.444 | Prob(JB): | 0.603 |
Kurtosis: | 2.483 | Cond. No. | 1.38e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.652 |
Model: | OLS | Adj. R-squared: | 0.617 |
Method: | Least Squares | F-statistic: | 18.70 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.64e-05 |
Time: | 04:47:34 | Log-Likelihood: | -100.98 |
No. Observations: | 23 | AIC: | 208.0 |
Df Residuals: | 20 | BIC: | 211.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 124.1403 | 185.112 | 0.671 | 0.510 | -261.996 510.277 |
C(dose)[T.1] | 57.0934 | 13.233 | 4.314 | 0.000 | 29.489 84.698 |
expression | -6.1978 | 16.397 | -0.378 | 0.709 | -40.401 28.006 |
Omnibus: | 0.707 | Durbin-Watson: | 1.943 |
Prob(Omnibus): | 0.702 | Jarque-Bera (JB): | 0.681 |
Skew: | 0.096 | Prob(JB): | 0.712 |
Kurtosis: | 2.180 | Cond. No. | 496. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:47:34 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.327 |
Model: | OLS | Adj. R-squared: | 0.295 |
Method: | Least Squares | F-statistic: | 10.21 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00434 |
Time: | 04:47:34 | Log-Likelihood: | -108.55 |
No. Observations: | 23 | AIC: | 221.1 |
Df Residuals: | 21 | BIC: | 223.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -463.3749 | 170.029 | -2.725 | 0.013 | -816.969 -109.781 |
expression | 46.9265 | 14.683 | 3.196 | 0.004 | 16.392 77.461 |
Omnibus: | 0.772 | Durbin-Watson: | 1.741 |
Prob(Omnibus): | 0.680 | Jarque-Bera (JB): | 0.787 |
Skew: | 0.265 | Prob(JB): | 0.675 |
Kurtosis: | 2.265 | Cond. No. | 335. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.950 | 0.112 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.574 |
Model: | OLS | Adj. R-squared: | 0.458 |
Method: | Least Squares | F-statistic: | 4.936 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0207 |
Time: | 04:47:34 | Log-Likelihood: | -68.904 |
No. Observations: | 15 | AIC: | 145.8 |
Df Residuals: | 11 | BIC: | 148.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -461.1974 | 412.454 | -1.118 | 0.287 | -1369.002 446.607 |
C(dose)[T.1] | 336.7011 | 454.936 | 0.740 | 0.475 | -664.607 1338.009 |
expression | 56.8256 | 44.323 | 1.282 | 0.226 | -40.729 154.380 |
expression:C(dose)[T.1] | -31.5071 | 48.680 | -0.647 | 0.531 | -138.651 75.637 |
Omnibus: | 1.648 | Durbin-Watson: | 1.704 |
Prob(Omnibus): | 0.439 | Jarque-Bera (JB): | 0.915 |
Skew: | -0.169 | Prob(JB): | 0.633 |
Kurtosis: | 1.839 | Cond. No. | 926. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.558 |
Model: | OLS | Adj. R-squared: | 0.484 |
Method: | Least Squares | F-statistic: | 7.560 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00750 |
Time: | 04:47:34 | Log-Likelihood: | -69.185 |
No. Observations: | 15 | AIC: | 144.4 |
Df Residuals: | 12 | BIC: | 146.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -218.2180 | 166.639 | -1.310 | 0.215 | -581.293 144.857 |
C(dose)[T.1] | 42.4136 | 14.644 | 2.896 | 0.013 | 10.507 74.321 |
expression | 30.7061 | 17.879 | 1.717 | 0.112 | -8.249 69.661 |
Omnibus: | 1.116 | Durbin-Watson: | 1.457 |
Prob(Omnibus): | 0.572 | Jarque-Bera (JB): | 0.783 |
Skew: | -0.179 | Prob(JB): | 0.676 |
Kurtosis: | 1.940 | Cond. No. | 226. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:47:34 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.248 |
Model: | OLS | Adj. R-squared: | 0.190 |
Method: | Least Squares | F-statistic: | 4.293 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0587 |
Time: | 04:47:34 | Log-Likelihood: | -73.160 |
No. Observations: | 15 | AIC: | 150.3 |
Df Residuals: | 13 | BIC: | 151.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -327.1522 | 203.302 | -1.609 | 0.132 | -766.359 112.055 |
expression | 44.6710 | 21.561 | 2.072 | 0.059 | -1.908 91.250 |
Omnibus: | 1.615 | Durbin-Watson: | 2.064 |
Prob(Omnibus): | 0.446 | Jarque-Bera (JB): | 1.231 |
Skew: | 0.643 | Prob(JB): | 0.540 |
Kurtosis: | 2.440 | Cond. No. | 220. |