AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.403 0.533 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.699
Model: OLS Adj. R-squared: 0.651
Method: Least Squares F-statistic: 14.68
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.47e-05
Time: 04:34:50 Log-Likelihood: -99.311
No. Observations: 23 AIC: 206.6
Df Residuals: 19 BIC: 211.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 109.5728 41.013 2.672 0.015 23.731 195.415
C(dose)[T.1] -78.9378 79.902 -0.988 0.336 -246.174 88.299
expression -8.1756 5.996 -1.363 0.189 -20.726 4.375
expression:C(dose)[T.1] 20.6136 12.569 1.640 0.117 -5.694 46.921
Omnibus: 1.207 Durbin-Watson: 1.622
Prob(Omnibus): 0.547 Jarque-Bera (JB): 1.014
Skew: 0.300 Prob(JB): 0.602
Kurtosis: 2.164 Cond. No. 149.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.656
Model: OLS Adj. R-squared: 0.622
Method: Least Squares F-statistic: 19.07
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.32e-05
Time: 04:34:50 Log-Likelihood: -100.83
No. Observations: 23 AIC: 207.7
Df Residuals: 20 BIC: 211.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 77.8035 37.646 2.067 0.052 -0.726 156.333
C(dose)[T.1] 51.2870 9.264 5.536 0.000 31.963 70.611
expression -3.4843 5.488 -0.635 0.533 -14.932 7.964
Omnibus: 0.004 Durbin-Watson: 1.862
Prob(Omnibus): 0.998 Jarque-Bera (JB): 0.165
Skew: -0.026 Prob(JB): 0.921
Kurtosis: 2.588 Cond. No. 58.5

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:34:50 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.129
Model: OLS Adj. R-squared: 0.087
Method: Least Squares F-statistic: 3.104
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0926
Time: 04:34:50 Log-Likelihood: -111.52
No. Observations: 23 AIC: 227.0
Df Residuals: 21 BIC: 229.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 171.0726 52.285 3.272 0.004 62.339 279.806
expression -14.0752 7.989 -1.762 0.093 -30.688 2.538
Omnibus: 2.294 Durbin-Watson: 2.234
Prob(Omnibus): 0.318 Jarque-Bera (JB): 1.538
Skew: 0.407 Prob(JB): 0.464
Kurtosis: 2.029 Cond. No. 52.0

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
3.177 0.100 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.573
Model: OLS Adj. R-squared: 0.457
Method: Least Squares F-statistic: 4.925
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0208
Time: 04:34:50 Log-Likelihood: -68.914
No. Observations: 15 AIC: 145.8
Df Residuals: 11 BIC: 148.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 182.9844 205.693 0.890 0.393 -269.742 635.711
C(dose)[T.1] 168.6905 248.027 0.680 0.510 -377.214 714.595
expression -20.5719 36.570 -0.563 0.585 -101.062 59.919
expression:C(dose)[T.1] -21.2976 44.088 -0.483 0.639 -118.335 75.740
Omnibus: 0.895 Durbin-Watson: 0.806
Prob(Omnibus): 0.639 Jarque-Bera (JB): 0.692
Skew: -0.471 Prob(JB): 0.708
Kurtosis: 2.531 Cond. No. 288.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.564
Model: OLS Adj. R-squared: 0.492
Method: Least Squares F-statistic: 7.767
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00685
Time: 04:34:50 Log-Likelihood: -69.071
No. Observations: 15 AIC: 144.1
Df Residuals: 12 BIC: 146.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 265.2958 111.479 2.380 0.035 22.403 508.189
C(dose)[T.1] 49.0799 13.996 3.507 0.004 18.586 79.574
expression -35.2254 19.763 -1.782 0.100 -78.284 7.834
Omnibus: 0.883 Durbin-Watson: 0.718
Prob(Omnibus): 0.643 Jarque-Bera (JB): 0.757
Skew: -0.468 Prob(JB): 0.685
Kurtosis: 2.423 Cond. No. 93.1

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:34:50 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.118
Model: OLS Adj. R-squared: 0.050
Method: Least Squares F-statistic: 1.731
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.211
Time: 04:34:50 Log-Likelihood: -74.362
No. Observations: 15 AIC: 152.7
Df Residuals: 13 BIC: 154.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 293.2892 152.015 1.929 0.076 -35.120 621.698
expression -35.5490 27.018 -1.316 0.211 -93.917 22.819
Omnibus: 0.790 Durbin-Watson: 1.951
Prob(Omnibus): 0.674 Jarque-Bera (JB): 0.650
Skew: 0.078 Prob(JB): 0.722
Kurtosis: 1.992 Cond. No. 92.4