AIM Score vs. Gene Expression 
		Full X range:
		
 
		 
			
		
		Auto X range:
		
 
		
		Group Comparisons: Boxplots
		 
		 
		
		
		 CP73 
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic | p-value | df difference | 
		 | 0.403 | 0.533 | 1.0 | 
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.699 | 
  | Model: | OLS | Adj. R-squared: | 0.651 | 
  | Method: | Least Squares | F-statistic: | 14.68 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 3.47e-05 | 
  | Time: | 11:44:15 | Log-Likelihood: | -99.311 | 
  | No. Observations: | 23 | AIC: | 206.6 | 
  | Df Residuals: | 19 | BIC: | 211.2 | 
  | Df Model: | 3 |  |  | 
             |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 109.5728 | 41.013 | 2.672 | 0.015 | 23.731   195.415 | 
  | C(dose)[T.1] | -78.9378 | 79.902 | -0.988 | 0.336 | -246.174    88.299 | 
  | expression | -8.1756 | 5.996 | -1.363 | 0.189 | -20.726     4.375 | 
  | expression:C(dose)[T.1] | 20.6136 | 12.569 | 1.640 | 0.117 | -5.694    46.921 | 
  | Omnibus: | 1.207 | Durbin-Watson: | 1.622 | 
  | Prob(Omnibus): | 0.547 | Jarque-Bera (JB): | 1.014 | 
  | Skew: | 0.300 | Prob(JB): | 0.602 | 
  | Kurtosis: | 2.164 | Cond. No. | 149. | 
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.656 | 
  | Model: | OLS | Adj. R-squared: | 0.622 | 
  | Method: | Least Squares | F-statistic: | 19.07 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 2.32e-05 | 
  | Time: | 11:44:15 | Log-Likelihood: | -100.83 | 
  | No. Observations: | 23 | AIC: | 207.7 | 
  | Df Residuals: | 20 | BIC: | 211.1 | 
  | Df Model: | 2 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 77.8035 | 37.646 | 2.067 | 0.052 | -0.726   156.333 | 
  | C(dose)[T.1] | 51.2870 | 9.264 | 5.536 | 0.000 | 31.963    70.611 | 
  | expression | -3.4843 | 5.488 | -0.635 | 0.533 | -14.932     7.964 | 
  | Omnibus: | 0.004 | Durbin-Watson: | 1.862 | 
  | Prob(Omnibus): | 0.998 | Jarque-Bera (JB): | 0.165 | 
  | Skew: | -0.026 | Prob(JB): | 0.921 | 
  | Kurtosis: | 2.588 | Cond. No. | 58.5 | 
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.649 | 
  | Model: | OLS | Adj. R-squared: | 0.632 | 
  | Method: | Least Squares | F-statistic: | 38.84 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 3.51e-06 | 
  | Time: | 11:44:15 | Log-Likelihood: | -101.06 | 
  | No. Observations: | 23 | AIC: | 206.1 | 
  | Df Residuals: | 21 | BIC: | 208.4 | 
  | Df Model: | 1 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900    66.517 | 
  | C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539    71.135 | 
  | Omnibus: | 0.322 | Durbin-Watson: | 1.888 | 
  | Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 | 
  | Skew: | 0.060 | Prob(JB): | 0.785 | 
  | Kurtosis: | 2.299 | Cond. No. | 2.57 | 
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.129 | 
  | Model: | OLS | Adj. R-squared: | 0.087 | 
  | Method: | Least Squares | F-statistic: | 3.104 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.0926 | 
  | Time: | 11:44:15 | Log-Likelihood: | -111.52 | 
  | No. Observations: | 23 | AIC: | 227.0 | 
  | Df Residuals: | 21 | BIC: | 229.3 | 
  | Df Model: | 1 |  |  | 
       |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 171.0726 | 52.285 | 3.272 | 0.004 | 62.339   279.806 | 
  | expression | -14.0752 | 7.989 | -1.762 | 0.093 | -30.688     2.538 | 
  | Omnibus: | 2.294 | Durbin-Watson: | 2.234 | 
  | Prob(Omnibus): | 0.318 | Jarque-Bera (JB): | 1.538 | 
  | Skew: | 0.407 | Prob(JB): | 0.464 | 
  | Kurtosis: | 2.029 | Cond. No. | 52.0 | 
			 
		
			
		
		 
	
		
		 CP101 
		
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic | p-value | df difference | 
		 | 3.177 | 0.100 | 1.0 | 
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.573 | 
  | Model: | OLS | Adj. R-squared: | 0.457 | 
  | Method: | Least Squares | F-statistic: | 4.925 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.0208 | 
  | Time: | 11:44:15 | Log-Likelihood: | -68.914 | 
  | No. Observations: | 15 | AIC: | 145.8 | 
  | Df Residuals: | 11 | BIC: | 148.7 | 
  | Df Model: | 3 |  |  | 
             |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 182.9844 | 205.693 | 0.890 | 0.393 | -269.742   635.711 | 
  | C(dose)[T.1] | 168.6905 | 248.027 | 0.680 | 0.510 | -377.214   714.595 | 
  | expression | -20.5719 | 36.570 | -0.563 | 0.585 | -101.062    59.919 | 
  | expression:C(dose)[T.1] | -21.2976 | 44.088 | -0.483 | 0.639 | -118.335    75.740 | 
  | Omnibus: | 0.895 | Durbin-Watson: | 0.806 | 
  | Prob(Omnibus): | 0.639 | Jarque-Bera (JB): | 0.692 | 
  | Skew: | -0.471 | Prob(JB): | 0.708 | 
  | Kurtosis: | 2.531 | Cond. No. | 288. | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.564 | 
  | Model: | OLS | Adj. R-squared: | 0.492 | 
  | Method: | Least Squares | F-statistic: | 7.767 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.00685 | 
  | Time: | 11:44:15 | Log-Likelihood: | -69.071 | 
  | No. Observations: | 15 | AIC: | 144.1 | 
  | Df Residuals: | 12 | BIC: | 146.3 | 
  | Df Model: | 2 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 265.2958 | 111.479 | 2.380 | 0.035 | 22.403   508.189 | 
  | C(dose)[T.1] | 49.0799 | 13.996 | 3.507 | 0.004 | 18.586    79.574 | 
  | expression | -35.2254 | 19.763 | -1.782 | 0.100 | -78.284     7.834 | 
  | Omnibus: | 0.883 | Durbin-Watson: | 0.718 | 
  | Prob(Omnibus): | 0.643 | Jarque-Bera (JB): | 0.757 | 
  | Skew: | -0.468 | Prob(JB): | 0.685 | 
  | Kurtosis: | 2.423 | Cond. No. | 93.1 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.449 | 
  | Model: | OLS | Adj. R-squared: | 0.406 | 
  | Method: | Least Squares | F-statistic: | 10.58 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.00629 | 
  | Time: | 11:44:15 | Log-Likelihood: | -70.833 | 
  | No. Observations: | 15 | AIC: | 145.7 | 
  | Df Residuals: | 13 | BIC: | 147.1 | 
  | Df Model: | 1 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570    91.287 | 
  | C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527    81.866 | 
  | Omnibus: | 2.713 | Durbin-Watson: | 0.810 | 
  | Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 | 
  | Skew: | -0.843 | Prob(JB): | 0.393 | 
  | Kurtosis: | 2.619 | Cond. No. | 2.70 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.118 | 
  | Model: | OLS | Adj. R-squared: | 0.050 | 
  | Method: | Least Squares | F-statistic: | 1.731 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.211 | 
  | Time: | 11:44:15 | Log-Likelihood: | -74.362 | 
  | No. Observations: | 15 | AIC: | 152.7 | 
  | Df Residuals: | 13 | BIC: | 154.1 | 
  | Df Model: | 1 |  |  | 
       |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 293.2892 | 152.015 | 1.929 | 0.076 | -35.120   621.698 | 
  | expression | -35.5490 | 27.018 | -1.316 | 0.211 | -93.917    22.819 | 
  | Omnibus: | 0.790 | Durbin-Watson: | 1.951 | 
  | Prob(Omnibus): | 0.674 | Jarque-Bera (JB): | 0.650 | 
  | Skew: | 0.078 | Prob(JB): | 0.722 | 
  | Kurtosis: | 1.992 | Cond. No. | 92.4 |