AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.865 0.363 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.669
Model: OLS Adj. R-squared: 0.617
Method: Least Squares F-statistic: 12.82
Date: Thu, 21 Nov 2024 Prob (F-statistic): 8.23e-05
Time: 04:52:14 Log-Likelihood: -100.38
No. Observations: 23 AIC: 208.8
Df Residuals: 19 BIC: 213.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 228.4543 325.404 0.702 0.491 -452.623 909.532
C(dose)[T.1] 462.0490 703.317 0.657 0.519 -1010.011 1934.109
expression -14.1547 26.429 -0.536 0.598 -69.472 41.162
expression:C(dose)[T.1] -31.8418 55.844 -0.570 0.575 -148.724 85.041
Omnibus: 2.447 Durbin-Watson: 1.737
Prob(Omnibus): 0.294 Jarque-Bera (JB): 1.182
Skew: 0.077 Prob(JB): 0.554
Kurtosis: 1.900 Cond. No. 2.37e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.664
Model: OLS Adj. R-squared: 0.630
Method: Least Squares F-statistic: 19.73
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.86e-05
Time: 04:52:14 Log-Likelihood: -100.58
No. Observations: 23 AIC: 207.2
Df Residuals: 20 BIC: 210.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 316.2512 281.790 1.122 0.275 -271.552 904.054
C(dose)[T.1] 61.0818 11.960 5.107 0.000 36.133 86.031
expression -21.2867 22.886 -0.930 0.363 -69.026 26.452
Omnibus: 1.997 Durbin-Watson: 1.754
Prob(Omnibus): 0.368 Jarque-Bera (JB): 1.063
Skew: 0.003 Prob(JB): 0.588
Kurtosis: 1.947 Cond. No. 827.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:52:14 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.225
Model: OLS Adj. R-squared: 0.188
Method: Least Squares F-statistic: 6.094
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0222
Time: 04:52:14 Log-Likelihood: -110.17
No. Observations: 23 AIC: 224.3
Df Residuals: 21 BIC: 226.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -670.3278 303.897 -2.206 0.039 -1302.316 -38.340
expression 60.0797 24.337 2.469 0.022 9.468 110.692
Omnibus: 3.025 Durbin-Watson: 2.300
Prob(Omnibus): 0.220 Jarque-Bera (JB): 1.617
Skew: 0.351 Prob(JB): 0.445
Kurtosis: 1.906 Cond. No. 601.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.148 0.707 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.544
Model: OLS Adj. R-squared: 0.420
Method: Least Squares F-statistic: 4.380
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0293
Time: 04:52:14 Log-Likelihood: -69.405
No. Observations: 15 AIC: 146.8
Df Residuals: 11 BIC: 149.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 422.7609 359.543 1.176 0.264 -368.588 1214.110
C(dose)[T.1] -585.0358 433.494 -1.350 0.204 -1539.150 369.078
expression -30.4213 30.768 -0.989 0.344 -98.140 37.298
expression:C(dose)[T.1] 54.3610 37.121 1.464 0.171 -27.342 136.064
Omnibus: 0.105 Durbin-Watson: 1.415
Prob(Omnibus): 0.949 Jarque-Bera (JB): 0.183
Skew: -0.149 Prob(JB): 0.913
Kurtosis: 2.548 Cond. No. 988.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.455
Model: OLS Adj. R-squared: 0.365
Method: Least Squares F-statistic: 5.019
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0261
Time: 04:52:14 Log-Likelihood: -70.741
No. Observations: 15 AIC: 147.5
Df Residuals: 12 BIC: 149.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -13.4453 210.743 -0.064 0.950 -472.615 445.725
C(dose)[T.1] 49.4058 15.653 3.156 0.008 15.301 83.511
expression 6.9239 18.016 0.384 0.707 -32.330 46.177
Omnibus: 1.826 Durbin-Watson: 0.888
Prob(Omnibus): 0.401 Jarque-Bera (JB): 1.331
Skew: -0.687 Prob(JB): 0.514
Kurtosis: 2.506 Cond. No. 318.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:52:14 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.003
Model: OLS Adj. R-squared: -0.073
Method: Least Squares F-statistic: 0.04464
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.836
Time: 04:52:14 Log-Likelihood: -75.274
No. Observations: 15 AIC: 154.5
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 35.9912 273.160 0.132 0.897 -554.134 626.117
expression 4.9446 23.402 0.211 0.836 -45.613 55.502
Omnibus: 0.270 Durbin-Watson: 1.622
Prob(Omnibus): 0.874 Jarque-Bera (JB): 0.436
Skew: 0.027 Prob(JB): 0.804
Kurtosis: 2.167 Cond. No. 317.