AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.122 0.730 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.655
Model: OLS Adj. R-squared: 0.600
Method: Least Squares F-statistic: 12.00
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000123
Time: 03:39:37 Log-Likelihood: -100.88
No. Observations: 23 AIC: 209.8
Df Residuals: 19 BIC: 214.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -12.1316 123.501 -0.098 0.923 -270.622 246.359
C(dose)[T.1] 137.0890 205.676 0.667 0.513 -293.396 567.574
expression 7.7275 14.368 0.538 0.597 -22.345 37.800
expression:C(dose)[T.1] -9.5271 22.248 -0.428 0.673 -56.092 37.038
Omnibus: 0.097 Durbin-Watson: 1.963
Prob(Omnibus): 0.953 Jarque-Bera (JB): 0.316
Skew: 0.059 Prob(JB): 0.854
Kurtosis: 2.438 Cond. No. 535.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.651
Model: OLS Adj. R-squared: 0.616
Method: Least Squares F-statistic: 18.67
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.67e-05
Time: 03:39:37 Log-Likelihood: -100.99
No. Observations: 23 AIC: 208.0
Df Residuals: 20 BIC: 211.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 21.9809 92.430 0.238 0.814 -170.824 214.786
C(dose)[T.1] 49.2441 14.617 3.369 0.003 18.754 79.735
expression 3.7540 10.743 0.349 0.730 -18.657 26.164
Omnibus: 0.083 Durbin-Watson: 1.979
Prob(Omnibus): 0.959 Jarque-Bera (JB): 0.309
Skew: 0.006 Prob(JB): 0.857
Kurtosis: 2.432 Cond. No. 197.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:39:37 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.453
Model: OLS Adj. R-squared: 0.427
Method: Least Squares F-statistic: 17.41
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000430
Time: 03:39:37 Log-Likelihood: -106.16
No. Observations: 23 AIC: 216.3
Df Residuals: 21 BIC: 218.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -218.6021 71.699 -3.049 0.006 -367.709 -69.495
expression 32.7594 7.852 4.172 0.000 16.431 49.088
Omnibus: 1.739 Durbin-Watson: 2.377
Prob(Omnibus): 0.419 Jarque-Bera (JB): 1.011
Skew: 0.077 Prob(JB): 0.603
Kurtosis: 1.984 Cond. No. 124.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.159 0.303 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.505
Model: OLS Adj. R-squared: 0.371
Method: Least Squares F-statistic: 3.748
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0447
Time: 03:39:37 Log-Likelihood: -70.019
No. Observations: 15 AIC: 148.0
Df Residuals: 11 BIC: 150.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 13.3175 110.140 0.121 0.906 -229.100 255.735
C(dose)[T.1] -30.2087 172.504 -0.175 0.864 -409.887 349.470
expression 8.2258 16.654 0.494 0.631 -28.429 44.880
expression:C(dose)[T.1] 10.6911 25.078 0.426 0.678 -44.505 65.888
Omnibus: 2.766 Durbin-Watson: 0.599
Prob(Omnibus): 0.251 Jarque-Bera (JB): 1.616
Skew: -0.554 Prob(JB): 0.446
Kurtosis: 1.835 Cond. No. 202.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.497
Model: OLS Adj. R-squared: 0.414
Method: Least Squares F-statistic: 5.936
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0161
Time: 03:39:37 Log-Likelihood: -70.141
No. Observations: 15 AIC: 146.3
Df Residuals: 12 BIC: 148.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -17.6969 79.825 -0.222 0.828 -191.620 156.226
C(dose)[T.1] 42.9874 16.099 2.670 0.020 7.911 78.064
expression 12.9405 12.019 1.077 0.303 -13.248 39.129
Omnibus: 2.898 Durbin-Watson: 0.601
Prob(Omnibus): 0.235 Jarque-Bera (JB): 1.671
Skew: -0.568 Prob(JB): 0.434
Kurtosis: 1.824 Cond. No. 75.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:39:37 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.199
Model: OLS Adj. R-squared: 0.137
Method: Least Squares F-statistic: 3.223
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0959
Time: 03:39:37 Log-Likelihood: -73.639
No. Observations: 15 AIC: 151.3
Df Residuals: 13 BIC: 152.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -73.3432 93.475 -0.785 0.447 -275.283 128.597
expression 24.4376 13.613 1.795 0.096 -4.971 53.846
Omnibus: 1.981 Durbin-Watson: 1.251
Prob(Omnibus): 0.371 Jarque-Bera (JB): 0.957
Skew: 0.101 Prob(JB): 0.620
Kurtosis: 1.779 Cond. No. 72.0