AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.572 | 0.458 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.663 |
Model: | OLS | Adj. R-squared: | 0.609 |
Method: | Least Squares | F-statistic: | 12.43 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 9.92e-05 |
Time: | 04:53:20 | Log-Likelihood: | -100.61 |
No. Observations: | 23 | AIC: | 209.2 |
Df Residuals: | 19 | BIC: | 213.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 136.8219 | 280.484 | 0.488 | 0.631 | -450.238 723.882 |
C(dose)[T.1] | 274.1243 | 464.242 | 0.590 | 0.562 | -697.545 1245.794 |
expression | -7.4233 | 25.197 | -0.295 | 0.771 | -60.162 45.315 |
expression:C(dose)[T.1] | -18.5779 | 40.493 | -0.459 | 0.652 | -103.330 66.175 |
Omnibus: | 0.862 | Durbin-Watson: | 1.856 |
Prob(Omnibus): | 0.650 | Jarque-Bera (JB): | 0.733 |
Skew: | 0.062 | Prob(JB): | 0.693 |
Kurtosis: | 2.134 | Cond. No. | 1.50e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.659 |
Model: | OLS | Adj. R-squared: | 0.625 |
Method: | Least Squares | F-statistic: | 19.31 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.14e-05 |
Time: | 04:53:20 | Log-Likelihood: | -100.74 |
No. Observations: | 23 | AIC: | 207.5 |
Df Residuals: | 20 | BIC: | 210.9 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 216.8787 | 215.220 | 1.008 | 0.326 | -232.063 665.820 |
C(dose)[T.1] | 61.2273 | 13.552 | 4.518 | 0.000 | 32.958 89.497 |
expression | -14.6169 | 19.331 | -0.756 | 0.458 | -54.941 25.708 |
Omnibus: | 1.318 | Durbin-Watson: | 1.959 |
Prob(Omnibus): | 0.517 | Jarque-Bera (JB): | 0.879 |
Skew: | -0.011 | Prob(JB): | 0.644 |
Kurtosis: | 2.042 | Cond. No. | 573. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:53:20 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.311 |
Model: | OLS | Adj. R-squared: | 0.278 |
Method: | Least Squares | F-statistic: | 9.461 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00573 |
Time: | 04:53:20 | Log-Likelihood: | -108.83 |
No. Observations: | 23 | AIC: | 221.7 |
Df Residuals: | 21 | BIC: | 223.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -519.5988 | 194.932 | -2.666 | 0.014 | -924.982 -114.216 |
expression | 52.6312 | 17.111 | 3.076 | 0.006 | 17.048 88.215 |
Omnibus: | 1.544 | Durbin-Watson: | 2.158 |
Prob(Omnibus): | 0.462 | Jarque-Bera (JB): | 1.109 |
Skew: | 0.527 | Prob(JB): | 0.574 |
Kurtosis: | 2.782 | Cond. No. | 373. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.030 | 0.864 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.458 |
Model: | OLS | Adj. R-squared: | 0.310 |
Method: | Least Squares | F-statistic: | 3.094 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0716 |
Time: | 04:53:20 | Log-Likelihood: | -70.711 |
No. Observations: | 15 | AIC: | 149.4 |
Df Residuals: | 11 | BIC: | 152.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 174.0116 | 291.210 | 0.598 | 0.562 | -466.938 814.961 |
C(dose)[T.1] | -141.9017 | 491.047 | -0.289 | 0.778 | -1222.689 938.886 |
expression | -11.6157 | 31.710 | -0.366 | 0.721 | -81.410 58.178 |
expression:C(dose)[T.1] | 20.8298 | 53.499 | 0.389 | 0.704 | -96.921 138.581 |
Omnibus: | 2.193 | Durbin-Watson: | 0.823 |
Prob(Omnibus): | 0.334 | Jarque-Bera (JB): | 1.594 |
Skew: | -0.758 | Prob(JB): | 0.451 |
Kurtosis: | 2.497 | Cond. No. | 699. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.450 |
Model: | OLS | Adj. R-squared: | 0.359 |
Method: | Least Squares | F-statistic: | 4.912 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0276 |
Time: | 04:53:20 | Log-Likelihood: | -70.814 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 106.8631 | 226.201 | 0.472 | 0.645 | -385.987 599.713 |
C(dose)[T.1] | 49.1816 | 15.720 | 3.129 | 0.009 | 14.931 83.432 |
expression | -4.2977 | 24.620 | -0.175 | 0.864 | -57.941 49.345 |
Omnibus: | 3.109 | Durbin-Watson: | 0.763 |
Prob(Omnibus): | 0.211 | Jarque-Bera (JB): | 2.068 |
Skew: | -0.898 | Prob(JB): | 0.355 |
Kurtosis: | 2.713 | Cond. No. | 268. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:53:20 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.002 |
Model: | OLS | Adj. R-squared: | -0.075 |
Method: | Least Squares | F-statistic: | 0.02187 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.885 |
Time: | 04:53:20 | Log-Likelihood: | -75.287 |
No. Observations: | 15 | AIC: | 154.6 |
Df Residuals: | 13 | BIC: | 156.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 136.9047 | 292.579 | 0.468 | 0.648 | -495.173 768.983 |
expression | -4.7131 | 31.873 | -0.148 | 0.885 | -73.571 64.145 |
Omnibus: | 0.679 | Durbin-Watson: | 1.631 |
Prob(Omnibus): | 0.712 | Jarque-Bera (JB): | 0.607 |
Skew: | 0.037 | Prob(JB): | 0.738 |
Kurtosis: | 2.017 | Cond. No. | 268. |