AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.937 | 0.345 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.677 |
Model: | OLS | Adj. R-squared: | 0.626 |
Method: | Least Squares | F-statistic: | 13.27 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 6.61e-05 |
Time: | 11:44:01 | Log-Likelihood: | -100.11 |
No. Observations: | 23 | AIC: | 208.2 |
Df Residuals: | 19 | BIC: | 212.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 52.1561 | 128.924 | 0.405 | 0.690 | -217.686 321.998 |
C(dose)[T.1] | 196.5738 | 169.699 | 1.158 | 0.261 | -158.609 551.757 |
expression | 0.2554 | 16.026 | 0.016 | 0.987 | -33.288 33.799 |
expression:C(dose)[T.1] | -17.9202 | 21.139 | -0.848 | 0.407 | -62.164 26.324 |
Omnibus: | 0.086 | Durbin-Watson: | 1.826 |
Prob(Omnibus): | 0.958 | Jarque-Bera (JB): | 0.068 |
Skew: | 0.062 | Prob(JB): | 0.966 |
Kurtosis: | 2.764 | Cond. No. | 430. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.665 |
Model: | OLS | Adj. R-squared: | 0.631 |
Method: | Least Squares | F-statistic: | 19.83 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 1.79e-05 |
Time: | 11:44:01 | Log-Likelihood: | -100.54 |
No. Observations: | 23 | AIC: | 207.1 |
Df Residuals: | 20 | BIC: | 210.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 134.9284 | 83.596 | 1.614 | 0.122 | -39.450 309.307 |
C(dose)[T.1] | 52.9012 | 8.583 | 6.163 | 0.000 | 34.997 70.805 |
expression | -10.0450 | 10.377 | -0.968 | 0.345 | -31.691 11.601 |
Omnibus: | 0.126 | Durbin-Watson: | 1.948 |
Prob(Omnibus): | 0.939 | Jarque-Bera (JB): | 0.349 |
Skew: | -0.019 | Prob(JB): | 0.840 |
Kurtosis: | 2.398 | Cond. No. | 159. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 11:44:01 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.028 |
Model: | OLS | Adj. R-squared: | -0.018 |
Method: | Least Squares | F-statistic: | 0.6057 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 0.445 |
Time: | 11:44:01 | Log-Likelihood: | -112.78 |
No. Observations: | 23 | AIC: | 229.6 |
Df Residuals: | 21 | BIC: | 231.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 187.1259 | 138.198 | 1.354 | 0.190 | -100.273 474.525 |
expression | -13.4008 | 17.219 | -0.778 | 0.445 | -49.211 22.409 |
Omnibus: | 2.587 | Durbin-Watson: | 2.581 |
Prob(Omnibus): | 0.274 | Jarque-Bera (JB): | 1.277 |
Skew: | 0.175 | Prob(JB): | 0.528 |
Kurtosis: | 1.900 | Cond. No. | 158. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.508 | 0.489 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.488 |
Model: | OLS | Adj. R-squared: | 0.348 |
Method: | Least Squares | F-statistic: | 3.495 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 0.0534 |
Time: | 11:44:01 | Log-Likelihood: | -70.279 |
No. Observations: | 15 | AIC: | 148.6 |
Df Residuals: | 11 | BIC: | 151.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 109.1794 | 272.874 | 0.400 | 0.697 | -491.412 709.771 |
C(dose)[T.1] | 301.8735 | 424.677 | 0.711 | 0.492 | -632.834 1236.581 |
expression | -5.7409 | 37.487 | -0.153 | 0.881 | -88.250 76.768 |
expression:C(dose)[T.1] | -35.4576 | 58.960 | -0.601 | 0.560 | -165.228 94.313 |
Omnibus: | 1.371 | Durbin-Watson: | 0.919 |
Prob(Omnibus): | 0.504 | Jarque-Bera (JB): | 0.928 |
Skew: | -0.579 | Prob(JB): | 0.629 |
Kurtosis: | 2.623 | Cond. No. | 503. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.471 |
Model: | OLS | Adj. R-squared: | 0.383 |
Method: | Least Squares | F-statistic: | 5.346 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 0.0219 |
Time: | 11:44:01 | Log-Likelihood: | -70.522 |
No. Observations: | 15 | AIC: | 147.0 |
Df Residuals: | 12 | BIC: | 149.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 213.4228 | 205.064 | 1.041 | 0.319 | -233.372 660.218 |
C(dose)[T.1] | 46.6676 | 15.819 | 2.950 | 0.012 | 12.201 81.135 |
expression | -20.0747 | 28.154 | -0.713 | 0.489 | -81.418 41.269 |
Omnibus: | 2.027 | Durbin-Watson: | 0.872 |
Prob(Omnibus): | 0.363 | Jarque-Bera (JB): | 1.389 |
Skew: | -0.719 | Prob(JB): | 0.499 |
Kurtosis: | 2.607 | Cond. No. | 196. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 0.00629 |
Time: | 11:44:01 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.088 |
Model: | OLS | Adj. R-squared: | 0.017 |
Method: | Least Squares | F-statistic: | 1.249 |
Date: | Tue, 03 Dec 2024 | Prob (F-statistic): | 0.284 |
Time: | 11:44:01 | Log-Likelihood: | -74.612 |
No. Observations: | 15 | AIC: | 153.2 |
Df Residuals: | 13 | BIC: | 154.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 372.4855 | 249.675 | 1.492 | 0.160 | -166.906 911.876 |
expression | -38.6961 | 34.625 | -1.118 | 0.284 | -113.499 36.107 |
Omnibus: | 0.116 | Durbin-Watson: | 1.636 |
Prob(Omnibus): | 0.943 | Jarque-Bera (JB): | 0.339 |
Skew: | 0.041 | Prob(JB): | 0.844 |
Kurtosis: | 2.269 | Cond. No. | 189. |