AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
2.908 0.104 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.787
Model: OLS Adj. R-squared: 0.754
Method: Least Squares F-statistic: 23.46
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.33e-06
Time: 03:36:27 Log-Likelihood: -95.299
No. Observations: 23 AIC: 198.6
Df Residuals: 19 BIC: 203.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 91.0387 61.844 1.472 0.157 -38.403 220.480
C(dose)[T.1] -190.6530 86.165 -2.213 0.039 -370.999 -10.307
expression -5.4015 9.042 -0.597 0.557 -24.327 13.524
expression:C(dose)[T.1] 37.4473 12.934 2.895 0.009 10.376 64.518
Omnibus: 0.123 Durbin-Watson: 1.310
Prob(Omnibus): 0.940 Jarque-Bera (JB): 0.180
Skew: 0.141 Prob(JB): 0.914
Kurtosis: 2.670 Cond. No. 217.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.694
Model: OLS Adj. R-squared: 0.663
Method: Least Squares F-statistic: 22.64
Date: Thu, 21 Nov 2024 Prob (F-statistic): 7.29e-06
Time: 03:36:27 Log-Likelihood: -99.502
No. Observations: 23 AIC: 205.0
Df Residuals: 20 BIC: 208.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -33.7545 51.893 -0.650 0.523 -142.002 74.493
C(dose)[T.1] 57.9049 8.621 6.717 0.000 39.922 75.888
expression 12.9005 7.565 1.705 0.104 -2.880 28.681
Omnibus: 0.962 Durbin-Watson: 1.809
Prob(Omnibus): 0.618 Jarque-Bera (JB): 0.881
Skew: 0.268 Prob(JB): 0.644
Kurtosis: 2.204 Cond. No. 86.8

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:36:27 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.002
Model: OLS Adj. R-squared: -0.045
Method: Least Squares F-statistic: 0.05200
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.822
Time: 03:36:27 Log-Likelihood: -113.08
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 98.9162 84.499 1.171 0.255 -76.809 274.642
expression -2.8874 12.662 -0.228 0.822 -29.219 23.444
Omnibus: 2.706 Durbin-Watson: 2.466
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.528
Skew: 0.342 Prob(JB): 0.466
Kurtosis: 1.938 Cond. No. 80.0

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.006 0.939 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.509
Model: OLS Adj. R-squared: 0.376
Method: Least Squares F-statistic: 3.807
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0429
Time: 03:36:27 Log-Likelihood: -69.959
No. Observations: 15 AIC: 147.9
Df Residuals: 11 BIC: 150.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -46.4012 135.477 -0.343 0.738 -344.585 251.782
C(dose)[T.1] 257.0616 179.152 1.435 0.179 -137.248 651.372
expression 20.0883 23.825 0.843 0.417 -32.350 72.527
expression:C(dose)[T.1] -36.0737 31.008 -1.163 0.269 -104.321 32.174
Omnibus: 1.469 Durbin-Watson: 1.017
Prob(Omnibus): 0.480 Jarque-Bera (JB): 0.861
Skew: -0.575 Prob(JB): 0.650
Kurtosis: 2.762 Cond. No. 192.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.357
Method: Least Squares F-statistic: 4.890
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0280
Time: 03:36:27 Log-Likelihood: -70.829
No. Observations: 15 AIC: 147.7
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 74.2769 88.418 0.840 0.417 -118.370 266.924
C(dose)[T.1] 49.4576 16.087 3.074 0.010 14.407 84.508
expression -1.2086 15.471 -0.078 0.939 -34.918 32.501
Omnibus: 2.620 Durbin-Watson: 0.830
Prob(Omnibus): 0.270 Jarque-Bera (JB): 1.799
Skew: -0.827 Prob(JB): 0.407
Kurtosis: 2.620 Cond. No. 67.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:36:27 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.015
Model: OLS Adj. R-squared: -0.061
Method: Least Squares F-statistic: 0.1992
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.663
Time: 03:36:27 Log-Likelihood: -75.186
No. Observations: 15 AIC: 154.4
Df Residuals: 13 BIC: 155.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 43.4984 112.850 0.385 0.706 -200.299 287.296
expression 8.6770 19.440 0.446 0.663 -33.321 50.675
Omnibus: 1.295 Durbin-Watson: 1.518
Prob(Omnibus): 0.523 Jarque-Bera (JB): 0.803
Skew: 0.107 Prob(JB): 0.669
Kurtosis: 1.887 Cond. No. 66.9