AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
4.732 0.042 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.716
Model: OLS Adj. R-squared: 0.671
Method: Least Squares F-statistic: 15.98
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.98e-05
Time: 03:32:18 Log-Likelihood: -98.620
No. Observations: 23 AIC: 205.2
Df Residuals: 19 BIC: 209.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 156.8878 75.778 2.070 0.052 -1.716 315.492
C(dose)[T.1] 51.0788 97.880 0.522 0.608 -153.787 255.945
expression -16.2697 11.974 -1.359 0.190 -41.332 8.793
expression:C(dose)[T.1] -0.5208 15.803 -0.033 0.974 -33.597 32.555
Omnibus: 0.260 Durbin-Watson: 1.620
Prob(Omnibus): 0.878 Jarque-Bera (JB): 0.447
Skew: -0.061 Prob(JB): 0.800
Kurtosis: 2.328 Cond. No. 206.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.716
Model: OLS Adj. R-squared: 0.688
Method: Least Squares F-statistic: 25.24
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.39e-06
Time: 03:32:18 Log-Likelihood: -98.620
No. Observations: 23 AIC: 203.2
Df Residuals: 20 BIC: 206.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 158.7750 48.377 3.282 0.004 57.863 259.687
C(dose)[T.1] 47.8650 8.278 5.782 0.000 30.598 65.132
expression -16.5687 7.616 -2.175 0.042 -32.456 -0.681
Omnibus: 0.283 Durbin-Watson: 1.618
Prob(Omnibus): 0.868 Jarque-Bera (JB): 0.462
Skew: -0.068 Prob(JB): 0.794
Kurtosis: 2.320 Cond. No. 78.1

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:32:18 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.242
Model: OLS Adj. R-squared: 0.206
Method: Least Squares F-statistic: 6.696
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0172
Time: 03:32:18 Log-Likelihood: -109.92
No. Observations: 23 AIC: 223.8
Df Residuals: 21 BIC: 226.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 264.0161 71.499 3.693 0.001 115.326 412.707
expression -29.9521 11.575 -2.588 0.017 -54.024 -5.881
Omnibus: 0.608 Durbin-Watson: 2.492
Prob(Omnibus): 0.738 Jarque-Bera (JB): 0.601
Skew: 0.333 Prob(JB): 0.740
Kurtosis: 2.572 Cond. No. 72.1

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
3.384 0.091 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.591
Model: OLS Adj. R-squared: 0.480
Method: Least Squares F-statistic: 5.308
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0166
Time: 03:32:18 Log-Likelihood: -68.586
No. Observations: 15 AIC: 145.2
Df Residuals: 11 BIC: 148.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 142.5559 96.927 1.471 0.169 -70.778 355.890
C(dose)[T.1] 157.2097 140.922 1.116 0.288 -152.957 467.376
expression -13.4385 17.239 -0.780 0.452 -51.381 24.504
expression:C(dose)[T.1] -18.9261 24.921 -0.759 0.464 -73.777 35.925
Omnibus: 2.050 Durbin-Watson: 1.072
Prob(Omnibus): 0.359 Jarque-Bera (JB): 1.068
Skew: -0.262 Prob(JB): 0.586
Kurtosis: 1.802 Cond. No. 153.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.570
Model: OLS Adj. R-squared: 0.498
Method: Least Squares F-statistic: 7.955
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00632
Time: 03:32:19 Log-Likelihood: -68.970
No. Observations: 15 AIC: 143.9
Df Residuals: 12 BIC: 146.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 193.1851 69.107 2.795 0.016 42.614 343.756
C(dose)[T.1] 50.7311 13.926 3.643 0.003 20.389 81.073
expression -22.4949 12.228 -1.840 0.091 -49.136 4.147
Omnibus: 2.842 Durbin-Watson: 1.309
Prob(Omnibus): 0.241 Jarque-Bera (JB): 1.402
Skew: -0.414 Prob(JB): 0.496
Kurtosis: 1.752 Cond. No. 58.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:32:19 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.095
Model: OLS Adj. R-squared: 0.025
Method: Least Squares F-statistic: 1.357
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.265
Time: 03:32:19 Log-Likelihood: -74.555
No. Observations: 15 AIC: 153.1
Df Residuals: 13 BIC: 154.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 205.2281 96.242 2.132 0.053 -2.689 413.145
expression -19.8267 17.018 -1.165 0.265 -56.591 16.937
Omnibus: 2.065 Durbin-Watson: 2.054
Prob(Omnibus): 0.356 Jarque-Bera (JB): 0.981
Skew: 0.118 Prob(JB): 0.612
Kurtosis: 1.770 Cond. No. 58.0