AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.968 0.337 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.668
Model: OLS Adj. R-squared: 0.615
Method: Least Squares F-statistic: 12.73
Date: Thu, 21 Nov 2024 Prob (F-statistic): 8.57e-05
Time: 03:41:03 Log-Likelihood: -100.43
No. Observations: 23 AIC: 208.9
Df Residuals: 19 BIC: 213.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -32.4029 151.178 -0.214 0.833 -348.822 284.016
C(dose)[T.1] -55.5108 272.398 -0.204 0.841 -625.646 514.624
expression 9.4694 16.515 0.573 0.573 -25.098 44.037
expression:C(dose)[T.1] 11.1018 29.001 0.383 0.706 -49.598 71.802
Omnibus: 0.118 Durbin-Watson: 1.929
Prob(Omnibus): 0.943 Jarque-Bera (JB): 0.138
Skew: -0.124 Prob(JB): 0.934
Kurtosis: 2.714 Cond. No. 709.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.665
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 19.87
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.77e-05
Time: 03:41:03 Log-Likelihood: -100.52
No. Observations: 23 AIC: 207.0
Df Residuals: 20 BIC: 210.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -65.3334 121.636 -0.537 0.597 -319.061 188.394
C(dose)[T.1] 48.6951 9.778 4.980 0.000 28.298 69.092
expression 13.0698 13.283 0.984 0.337 -14.638 40.778
Omnibus: 0.043 Durbin-Watson: 1.898
Prob(Omnibus): 0.979 Jarque-Bera (JB): 0.145
Skew: -0.082 Prob(JB): 0.930
Kurtosis: 2.646 Cond. No. 269.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:41:03 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.250
Model: OLS Adj. R-squared: 0.214
Method: Least Squares F-statistic: 7.007
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0151
Time: 03:41:03 Log-Likelihood: -109.79
No. Observations: 23 AIC: 223.6
Df Residuals: 21 BIC: 225.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -339.3641 158.440 -2.142 0.044 -668.857 -9.871
expression 44.9839 16.994 2.647 0.015 9.644 80.324
Omnibus: 1.754 Durbin-Watson: 2.089
Prob(Omnibus): 0.416 Jarque-Bera (JB): 1.002
Skew: -0.011 Prob(JB): 0.606
Kurtosis: 1.978 Cond. No. 239.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.716 0.414 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.530
Model: OLS Adj. R-squared: 0.402
Method: Least Squares F-statistic: 4.131
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0345
Time: 03:41:03 Log-Likelihood: -69.641
No. Observations: 15 AIC: 147.3
Df Residuals: 11 BIC: 150.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -175.3428 179.459 -0.977 0.350 -570.330 219.644
C(dose)[T.1] 341.8195 274.403 1.246 0.239 -262.138 945.777
expression 27.2914 20.136 1.355 0.202 -17.027 71.609
expression:C(dose)[T.1] -32.7271 30.274 -1.081 0.303 -99.359 33.904
Omnibus: 2.546 Durbin-Watson: 1.017
Prob(Omnibus): 0.280 Jarque-Bera (JB): 1.305
Skew: -0.722 Prob(JB): 0.521
Kurtosis: 3.039 Cond. No. 430.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.480
Model: OLS Adj. R-squared: 0.393
Method: Least Squares F-statistic: 5.534
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0198
Time: 03:41:03 Log-Likelihood: -70.398
No. Observations: 15 AIC: 146.8
Df Residuals: 12 BIC: 148.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -46.5533 135.151 -0.344 0.736 -341.023 247.916
C(dose)[T.1] 45.6650 15.849 2.881 0.014 11.133 80.198
expression 12.8134 15.141 0.846 0.414 -20.177 45.803
Omnibus: 2.552 Durbin-Watson: 0.863
Prob(Omnibus): 0.279 Jarque-Bera (JB): 1.872
Skew: -0.823 Prob(JB): 0.392
Kurtosis: 2.467 Cond. No. 163.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:41:03 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.120
Model: OLS Adj. R-squared: 0.052
Method: Least Squares F-statistic: 1.772
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.206
Time: 03:41:03 Log-Likelihood: -74.342
No. Observations: 15 AIC: 152.7
Df Residuals: 13 BIC: 154.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -126.0622 165.335 -0.762 0.459 -483.246 231.122
expression 24.2995 18.254 1.331 0.206 -15.135 63.734
Omnibus: 3.626 Durbin-Watson: 1.953
Prob(Omnibus): 0.163 Jarque-Bera (JB): 1.561
Skew: 0.428 Prob(JB): 0.458
Kurtosis: 1.671 Cond. No. 159.