AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.017 | 0.896 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.689 |
Model: | OLS | Adj. R-squared: | 0.640 |
Method: | Least Squares | F-statistic: | 14.05 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 4.61e-05 |
Time: | 04:50:42 | Log-Likelihood: | -99.662 |
No. Observations: | 23 | AIC: | 207.3 |
Df Residuals: | 19 | BIC: | 211.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -155.7800 | 213.808 | -0.729 | 0.475 | -603.285 291.725 |
C(dose)[T.1] | 675.3780 | 399.074 | 1.692 | 0.107 | -159.893 1510.649 |
expression | 21.6741 | 22.060 | 0.983 | 0.338 | -24.498 67.846 |
expression:C(dose)[T.1] | -62.0066 | 39.676 | -1.563 | 0.135 | -145.049 21.035 |
Omnibus: | 0.004 | Durbin-Watson: | 1.850 |
Prob(Omnibus): | 0.998 | Jarque-Bera (JB): | 0.174 |
Skew: | -0.020 | Prob(JB): | 0.917 |
Kurtosis: | 2.575 | Cond. No. | 1.14e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.52 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.81e-05 |
Time: | 04:50:42 | Log-Likelihood: | -101.05 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 29.9391 | 184.040 | 0.163 | 0.872 | -353.961 413.840 |
C(dose)[T.1] | 52.0147 | 13.315 | 3.906 | 0.001 | 24.239 79.790 |
expression | 2.5050 | 18.985 | 0.132 | 0.896 | -37.098 42.108 |
Omnibus: | 0.295 | Durbin-Watson: | 1.905 |
Prob(Omnibus): | 0.863 | Jarque-Bera (JB): | 0.469 |
Skew: | 0.062 | Prob(JB): | 0.791 |
Kurtosis: | 2.311 | Cond. No. | 424. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:50:42 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.382 |
Model: | OLS | Adj. R-squared: | 0.352 |
Method: | Least Squares | F-statistic: | 12.97 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00168 |
Time: | 04:50:42 | Log-Likelihood: | -107.57 |
No. Observations: | 23 | AIC: | 219.1 |
Df Residuals: | 21 | BIC: | 221.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -500.1370 | 161.101 | -3.105 | 0.005 | -835.164 -165.110 |
expression | 58.3299 | 16.196 | 3.602 | 0.002 | 24.649 92.011 |
Omnibus: | 1.873 | Durbin-Watson: | 2.292 |
Prob(Omnibus): | 0.392 | Jarque-Bera (JB): | 1.482 |
Skew: | 0.454 | Prob(JB): | 0.477 |
Kurtosis: | 2.151 | Cond. No. | 285. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.014 | 0.908 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.506 |
Model: | OLS | Adj. R-squared: | 0.371 |
Method: | Least Squares | F-statistic: | 3.750 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0446 |
Time: | 04:50:42 | Log-Likelihood: | -70.017 |
No. Observations: | 15 | AIC: | 148.0 |
Df Residuals: | 11 | BIC: | 150.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 334.7633 | 286.169 | 1.170 | 0.267 | -295.090 964.616 |
C(dose)[T.1] | -362.7118 | 368.085 | -0.985 | 0.346 | -1172.862 447.438 |
expression | -26.4492 | 28.290 | -0.935 | 0.370 | -88.716 35.817 |
expression:C(dose)[T.1] | 41.2196 | 36.859 | 1.118 | 0.287 | -39.906 122.345 |
Omnibus: | 1.795 | Durbin-Watson: | 0.968 |
Prob(Omnibus): | 0.408 | Jarque-Bera (JB): | 1.143 |
Skew: | -0.659 | Prob(JB): | 0.565 |
Kurtosis: | 2.700 | Cond. No. | 658. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.358 |
Method: | Least Squares | F-statistic: | 4.897 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0279 |
Time: | 04:50:42 | Log-Likelihood: | -70.824 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 89.3260 | 185.552 | 0.481 | 0.639 | -314.957 493.609 |
C(dose)[T.1] | 48.5044 | 16.784 | 2.890 | 0.014 | 11.935 85.074 |
expression | -2.1665 | 18.323 | -0.118 | 0.908 | -42.088 37.755 |
Omnibus: | 2.875 | Durbin-Watson: | 0.787 |
Prob(Omnibus): | 0.238 | Jarque-Bera (JB): | 1.977 |
Skew: | -0.870 | Prob(JB): | 0.372 |
Kurtosis: | 2.630 | Cond. No. | 238. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:50:42 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.066 |
Model: | OLS | Adj. R-squared: | -0.006 |
Method: | Least Squares | F-statistic: | 0.9219 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.354 |
Time: | 04:50:42 | Log-Likelihood: | -74.786 |
No. Observations: | 15 | AIC: | 153.6 |
Df Residuals: | 13 | BIC: | 155.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 298.6765 | 213.739 | 1.397 | 0.186 | -163.080 760.433 |
expression | -20.6307 | 21.487 | -0.960 | 0.354 | -67.050 25.788 |
Omnibus: | 1.955 | Durbin-Watson: | 1.566 |
Prob(Omnibus): | 0.376 | Jarque-Bera (JB): | 0.962 |
Skew: | 0.128 | Prob(JB): | 0.618 |
Kurtosis: | 1.786 | Cond. No. | 219. |