AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.148 | 0.704 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.653 |
Model: | OLS | Adj. R-squared: | 0.598 |
Method: | Least Squares | F-statistic: | 11.93 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000128 |
Time: | 04:33:21 | Log-Likelihood: | -100.93 |
No. Observations: | 23 | AIC: | 209.9 |
Df Residuals: | 19 | BIC: | 214.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -96.7849 | 316.296 | -0.306 | 0.763 | -758.801 565.231 |
C(dose)[T.1] | 207.8596 | 539.425 | 0.385 | 0.704 | -921.170 1336.889 |
expression | 15.5098 | 32.483 | 0.477 | 0.638 | -52.479 83.498 |
expression:C(dose)[T.1] | -15.8578 | 53.947 | -0.294 | 0.772 | -128.771 97.055 |
Omnibus: | 0.207 | Durbin-Watson: | 1.833 |
Prob(Omnibus): | 0.902 | Jarque-Bera (JB): | 0.408 |
Skew: | 0.100 | Prob(JB): | 0.816 |
Kurtosis: | 2.379 | Cond. No. | 1.48e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.652 |
Model: | OLS | Adj. R-squared: | 0.617 |
Method: | Least Squares | F-statistic: | 18.71 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.63e-05 |
Time: | 04:33:21 | Log-Likelihood: | -100.98 |
No. Observations: | 23 | AIC: | 208.0 |
Df Residuals: | 20 | BIC: | 211.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -40.8124 | 246.722 | -0.165 | 0.870 | -555.465 473.840 |
C(dose)[T.1] | 49.3485 | 13.548 | 3.643 | 0.002 | 21.089 77.608 |
expression | 9.7604 | 25.335 | 0.385 | 0.704 | -43.088 62.609 |
Omnibus: | 0.130 | Durbin-Watson: | 1.857 |
Prob(Omnibus): | 0.937 | Jarque-Bera (JB): | 0.352 |
Skew: | 0.020 | Prob(JB): | 0.839 |
Kurtosis: | 2.395 | Cond. No. | 569. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:33:21 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.421 |
Model: | OLS | Adj. R-squared: | 0.393 |
Method: | Least Squares | F-statistic: | 15.24 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000817 |
Time: | 04:33:21 | Log-Likelihood: | -106.83 |
No. Observations: | 23 | AIC: | 217.7 |
Df Residuals: | 21 | BIC: | 219.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -717.6056 | 204.313 | -3.512 | 0.002 | -1142.498 -292.713 |
expression | 80.2882 | 20.566 | 3.904 | 0.001 | 37.518 123.058 |
Omnibus: | 3.210 | Durbin-Watson: | 1.750 |
Prob(Omnibus): | 0.201 | Jarque-Bera (JB): | 1.330 |
Skew: | -0.060 | Prob(JB): | 0.514 |
Kurtosis: | 1.828 | Cond. No. | 373. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
8.251 | 0.014 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.674 |
Model: | OLS | Adj. R-squared: | 0.585 |
Method: | Least Squares | F-statistic: | 7.578 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00505 |
Time: | 04:33:21 | Log-Likelihood: | -66.895 |
No. Observations: | 15 | AIC: | 141.8 |
Df Residuals: | 11 | BIC: | 144.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -542.1162 | 356.855 | -1.519 | 0.157 | -1327.548 243.316 |
C(dose)[T.1] | 86.9643 | 444.225 | 0.196 | 0.848 | -890.768 1064.697 |
expression | 63.8475 | 37.367 | 1.709 | 0.116 | -18.396 146.091 |
expression:C(dose)[T.1] | -6.2985 | 45.875 | -0.137 | 0.893 | -107.269 94.672 |
Omnibus: | 3.044 | Durbin-Watson: | 1.190 |
Prob(Omnibus): | 0.218 | Jarque-Bera (JB): | 1.460 |
Skew: | -0.756 | Prob(JB): | 0.482 |
Kurtosis: | 3.223 | Cond. No. | 994. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.673 |
Model: | OLS | Adj. R-squared: | 0.619 |
Method: | Least Squares | F-statistic: | 12.37 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00121 |
Time: | 04:33:21 | Log-Likelihood: | -66.908 |
No. Observations: | 15 | AIC: | 139.8 |
Df Residuals: | 12 | BIC: | 141.9 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -502.2221 | 198.507 | -2.530 | 0.026 | -934.733 -69.712 |
C(dose)[T.1] | 26.0099 | 14.559 | 1.787 | 0.099 | -5.710 57.730 |
expression | 59.6688 | 20.772 | 2.873 | 0.014 | 14.410 104.928 |
Omnibus: | 3.606 | Durbin-Watson: | 1.155 |
Prob(Omnibus): | 0.165 | Jarque-Bera (JB): | 1.715 |
Skew: | -0.808 | Prob(JB): | 0.424 |
Kurtosis: | 3.367 | Cond. No. | 325. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:33:21 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.586 |
Model: | OLS | Adj. R-squared: | 0.555 |
Method: | Least Squares | F-statistic: | 18.44 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000873 |
Time: | 04:33:21 | Log-Likelihood: | -68.677 |
No. Observations: | 15 | AIC: | 141.4 |
Df Residuals: | 13 | BIC: | 142.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -689.0501 | 182.400 | -3.778 | 0.002 | -1083.101 -294.999 |
expression | 80.2446 | 18.688 | 4.294 | 0.001 | 39.872 120.617 |
Omnibus: | 0.956 | Durbin-Watson: | 1.400 |
Prob(Omnibus): | 0.620 | Jarque-Bera (JB): | 0.586 |
Skew: | -0.460 | Prob(JB): | 0.746 |
Kurtosis: | 2.699 | Cond. No. | 275. |