AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.047 | 0.831 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.656 |
Model: | OLS | Adj. R-squared: | 0.602 |
Method: | Least Squares | F-statistic: | 12.08 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000119 |
Time: | 04:32:26 | Log-Likelihood: | -100.83 |
No. Observations: | 23 | AIC: | 209.7 |
Df Residuals: | 19 | BIC: | 214.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -26.1874 | 170.550 | -0.154 | 0.880 | -383.152 330.777 |
C(dose)[T.1] | 247.7035 | 331.415 | 0.747 | 0.464 | -445.957 941.364 |
expression | 8.6522 | 18.343 | 0.472 | 0.643 | -29.739 47.044 |
expression:C(dose)[T.1] | -21.6145 | 37.154 | -0.582 | 0.568 | -99.379 56.150 |
Omnibus: | 0.342 | Durbin-Watson: | 1.749 |
Prob(Omnibus): | 0.843 | Jarque-Bera (JB): | 0.499 |
Skew: | -0.083 | Prob(JB): | 0.779 |
Kurtosis: | 2.298 | Cond. No. | 797. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.615 |
Method: | Least Squares | F-statistic: | 18.56 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.77e-05 |
Time: | 04:32:26 | Log-Likelihood: | -101.04 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 22.7637 | 145.873 | 0.156 | 0.878 | -281.523 327.050 |
C(dose)[T.1] | 55.0271 | 11.751 | 4.683 | 0.000 | 30.514 79.540 |
expression | 3.3841 | 15.685 | 0.216 | 0.831 | -29.335 36.103 |
Omnibus: | 0.460 | Durbin-Watson: | 1.802 |
Prob(Omnibus): | 0.794 | Jarque-Bera (JB): | 0.560 |
Skew: | 0.056 | Prob(JB): | 0.756 |
Kurtosis: | 2.244 | Cond. No. | 307. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:32:26 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.266 |
Model: | OLS | Adj. R-squared: | 0.231 |
Method: | Least Squares | F-statistic: | 7.610 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0118 |
Time: | 04:32:26 | Log-Likelihood: | -109.55 |
No. Observations: | 23 | AIC: | 223.1 |
Df Residuals: | 21 | BIC: | 225.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 492.3261 | 149.694 | 3.289 | 0.003 | 181.020 803.632 |
expression | -45.5767 | 16.521 | -2.759 | 0.012 | -79.934 -11.219 |
Omnibus: | 2.451 | Durbin-Watson: | 2.718 |
Prob(Omnibus): | 0.294 | Jarque-Bera (JB): | 1.170 |
Skew: | -0.032 | Prob(JB): | 0.557 |
Kurtosis: | 1.897 | Cond. No. | 222. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.687 | 0.218 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.608 |
Model: | OLS | Adj. R-squared: | 0.501 |
Method: | Least Squares | F-statistic: | 5.686 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0134 |
Time: | 04:32:26 | Log-Likelihood: | -68.277 |
No. Observations: | 15 | AIC: | 144.6 |
Df Residuals: | 11 | BIC: | 147.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -831.6920 | 761.848 | -1.092 | 0.298 | -2508.509 845.125 |
C(dose)[T.1] | 1310.5109 | 789.421 | 1.660 | 0.125 | -426.994 3048.016 |
expression | 105.8444 | 89.677 | 1.180 | 0.263 | -91.533 303.222 |
expression:C(dose)[T.1] | -148.7338 | 92.954 | -1.600 | 0.138 | -353.324 55.857 |
Omnibus: | 2.582 | Durbin-Watson: | 1.077 |
Prob(Omnibus): | 0.275 | Jarque-Bera (JB): | 1.208 |
Skew: | -0.297 | Prob(JB): | 0.547 |
Kurtosis: | 1.743 | Cond. No. | 1.57e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.517 |
Model: | OLS | Adj. R-squared: | 0.436 |
Method: | Least Squares | F-statistic: | 6.415 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0127 |
Time: | 04:32:26 | Log-Likelihood: | -69.847 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 12 | BIC: | 147.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 344.2434 | 213.401 | 1.613 | 0.133 | -120.718 809.205 |
C(dose)[T.1] | 47.5708 | 14.791 | 3.216 | 0.007 | 15.344 79.797 |
expression | -32.5866 | 25.090 | -1.299 | 0.218 | -87.252 22.079 |
Omnibus: | 2.317 | Durbin-Watson: | 0.789 |
Prob(Omnibus): | 0.314 | Jarque-Bera (JB): | 1.770 |
Skew: | -0.730 | Prob(JB): | 0.413 |
Kurtosis: | 2.164 | Cond. No. | 250. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:32:26 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.100 |
Model: | OLS | Adj. R-squared: | 0.031 |
Method: | Least Squares | F-statistic: | 1.446 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.251 |
Time: | 04:32:26 | Log-Likelihood: | -74.509 |
No. Observations: | 15 | AIC: | 153.0 |
Df Residuals: | 13 | BIC: | 154.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 427.4385 | 277.711 | 1.539 | 0.148 | -172.520 1027.397 |
expression | -39.4151 | 32.775 | -1.203 | 0.251 | -110.221 31.391 |
Omnibus: | 0.231 | Durbin-Watson: | 1.525 |
Prob(Omnibus): | 0.891 | Jarque-Bera (JB): | 0.169 |
Skew: | -0.196 | Prob(JB): | 0.919 |
Kurtosis: | 2.658 | Cond. No. | 248. |