AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.010 | 0.920 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.594 |
Method: | Least Squares | F-statistic: | 11.74 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.000141 |
Time: | 19:14:49 | Log-Likelihood: | -101.04 |
No. Observations: | 23 | AIC: | 210.1 |
Df Residuals: | 19 | BIC: | 214.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 55.0322 | 49.846 | 1.104 | 0.283 | -49.297 159.362 |
C(dose)[T.1] | 66.7096 | 95.582 | 0.698 | 0.494 | -133.345 266.765 |
expression | -0.1601 | 9.611 | -0.017 | 0.987 | -20.276 19.956 |
expression:C(dose)[T.1] | -2.8677 | 19.824 | -0.145 | 0.887 | -44.361 38.625 |
Omnibus: | 0.311 | Durbin-Watson: | 1.846 |
Prob(Omnibus): | 0.856 | Jarque-Bera (JB): | 0.477 |
Skew: | 0.031 | Prob(JB): | 0.788 |
Kurtosis: | 2.297 | Cond. No. | 127. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.51 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 2.82e-05 |
Time: | 19:14:50 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 58.5006 | 42.618 | 1.373 | 0.185 | -30.398 147.399 |
C(dose)[T.1] | 52.9557 | 9.535 | 5.554 | 0.000 | 33.066 72.846 |
expression | -0.8341 | 8.198 | -0.102 | 0.920 | -17.934 16.266 |
Omnibus: | 0.284 | Durbin-Watson: | 1.873 |
Prob(Omnibus): | 0.868 | Jarque-Bera (JB): | 0.461 |
Skew: | 0.040 | Prob(JB): | 0.794 |
Kurtosis: | 2.311 | Cond. No. | 50.6 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 19:14:50 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.108 |
Model: | OLS | Adj. R-squared: | 0.066 |
Method: | Least Squares | F-statistic: | 2.550 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.125 |
Time: | 19:14:50 | Log-Likelihood: | -111.79 |
No. Observations: | 23 | AIC: | 227.6 |
Df Residuals: | 21 | BIC: | 229.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 172.0085 | 58.190 | 2.956 | 0.008 | 50.996 293.021 |
expression | -18.7309 | 11.729 | -1.597 | 0.125 | -43.122 5.660 |
Omnibus: | 0.524 | Durbin-Watson: | 2.201 |
Prob(Omnibus): | 0.770 | Jarque-Bera (JB): | 0.587 |
Skew: | 0.004 | Prob(JB): | 0.746 |
Kurtosis: | 2.217 | Cond. No. | 44.1 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.587 | 0.134 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.576 |
Model: | OLS | Adj. R-squared: | 0.460 |
Method: | Least Squares | F-statistic: | 4.980 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.0202 |
Time: | 19:14:50 | Log-Likelihood: | -68.866 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 11 | BIC: | 148.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -24.1373 | 338.907 | -0.071 | 0.945 | -770.066 721.792 |
C(dose)[T.1] | 359.9200 | 360.344 | 0.999 | 0.339 | -433.191 1153.031 |
expression | 18.6434 | 68.970 | 0.270 | 0.792 | -133.159 170.446 |
expression:C(dose)[T.1] | -64.1724 | 73.482 | -0.873 | 0.401 | -225.905 97.561 |
Omnibus: | 0.616 | Durbin-Watson: | 0.976 |
Prob(Omnibus): | 0.735 | Jarque-Bera (JB): | 0.405 |
Skew: | -0.365 | Prob(JB): | 0.817 |
Kurtosis: | 2.661 | Cond. No. | 398. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.547 |
Model: | OLS | Adj. R-squared: | 0.471 |
Method: | Least Squares | F-statistic: | 7.231 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.00870 |
Time: | 19:14:50 | Log-Likelihood: | -69.369 |
No. Observations: | 15 | AIC: | 144.7 |
Df Residuals: | 12 | BIC: | 146.9 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 253.5247 | 116.179 | 2.182 | 0.050 | 0.393 506.656 |
C(dose)[T.1] | 45.4882 | 14.461 | 3.146 | 0.008 | 13.980 76.996 |
expression | -37.8903 | 23.559 | -1.608 | 0.134 | -89.221 13.441 |
Omnibus: | 0.662 | Durbin-Watson: | 1.058 |
Prob(Omnibus): | 0.718 | Jarque-Bera (JB): | 0.678 |
Skew: | -0.364 | Prob(JB): | 0.712 |
Kurtosis: | 2.254 | Cond. No. | 83.2 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.00629 |
Time: | 19:14:50 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.173 |
Model: | OLS | Adj. R-squared: | 0.109 |
Method: | Least Squares | F-statistic: | 2.712 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.124 |
Time: | 19:14:50 | Log-Likelihood: | -73.879 |
No. Observations: | 15 | AIC: | 151.8 |
Df Residuals: | 13 | BIC: | 153.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 335.2012 | 146.959 | 2.281 | 0.040 | 17.716 652.687 |
expression | -49.7061 | 30.183 | -1.647 | 0.124 | -114.913 15.501 |
Omnibus: | 0.165 | Durbin-Watson: | 1.721 |
Prob(Omnibus): | 0.921 | Jarque-Bera (JB): | 0.046 |
Skew: | 0.053 | Prob(JB): | 0.977 |
Kurtosis: | 2.749 | Cond. No. | 80.7 |