AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.431 0.519 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.657
Model: OLS Adj. R-squared: 0.603
Method: Least Squares F-statistic: 12.15
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.000114
Time: 19:50:25 Log-Likelihood: -100.79
No. Observations: 23 AIC: 209.6
Df Residuals: 19 BIC: 214.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 69.4483 59.964 1.158 0.261 -56.058 194.955
C(dose)[T.1] 70.3749 79.306 0.887 0.386 -95.615 236.365
expression -2.1819 8.540 -0.255 0.801 -20.056 15.692
expression:C(dose)[T.1] -2.4667 11.311 -0.218 0.830 -26.141 21.208
Omnibus: 0.078 Durbin-Watson: 2.043
Prob(Omnibus): 0.962 Jarque-Bera (JB): 0.062
Skew: -0.049 Prob(JB): 0.969
Kurtosis: 2.764 Cond. No. 171.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.656
Model: OLS Adj. R-squared: 0.622
Method: Least Squares F-statistic: 19.11
Date: Tue, 28 Jan 2025 Prob (F-statistic): 2.29e-05
Time: 19:50:25 Log-Likelihood: -100.82
No. Observations: 23 AIC: 207.6
Df Residuals: 20 BIC: 211.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 79.2688 38.640 2.051 0.054 -1.334 159.871
C(dose)[T.1] 53.1893 8.680 6.128 0.000 35.084 71.295
expression -3.5879 5.465 -0.657 0.519 -14.988 7.812
Omnibus: 0.043 Durbin-Watson: 2.064
Prob(Omnibus): 0.979 Jarque-Bera (JB): 0.071
Skew: 0.017 Prob(JB): 0.965
Kurtosis: 2.730 Cond. No. 63.9

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Tue, 28 Jan 2025 Prob (F-statistic): 3.51e-06
Time: 19:50:25 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.011
Model: OLS Adj. R-squared: -0.036
Method: Least Squares F-statistic: 0.2428
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.627
Time: 19:50:25 Log-Likelihood: -112.97
No. Observations: 23 AIC: 229.9
Df Residuals: 21 BIC: 232.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 110.7574 63.400 1.747 0.095 -21.089 242.604
expression -4.4565 9.044 -0.493 0.627 -23.265 14.352
Omnibus: 4.670 Durbin-Watson: 2.563
Prob(Omnibus): 0.097 Jarque-Bera (JB): 1.768
Skew: 0.264 Prob(JB): 0.413
Kurtosis: 1.748 Cond. No. 63.2

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.024 0.331 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.571
Model: OLS Adj. R-squared: 0.454
Method: Least Squares F-statistic: 4.884
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.0214
Time: 19:50:25 Log-Likelihood: -68.949
No. Observations: 15 AIC: 145.9
Df Residuals: 11 BIC: 148.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 42.6188 82.857 0.514 0.617 -139.749 224.987
C(dose)[T.1] -202.8687 179.165 -1.132 0.282 -597.208 191.470
expression 3.1855 10.551 0.302 0.768 -20.038 26.409
expression:C(dose)[T.1] 33.4359 23.475 1.424 0.182 -18.233 85.104
Omnibus: 1.997 Durbin-Watson: 0.601
Prob(Omnibus): 0.368 Jarque-Bera (JB): 1.449
Skew: -0.583 Prob(JB): 0.485
Kurtosis: 2.021 Cond. No. 230.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.492
Model: OLS Adj. R-squared: 0.407
Method: Least Squares F-statistic: 5.814
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.0172
Time: 19:50:25 Log-Likelihood: -70.219
No. Observations: 15 AIC: 146.4
Df Residuals: 12 BIC: 148.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -9.9898 77.283 -0.129 0.899 -178.374 158.395
C(dose)[T.1] 51.4626 15.273 3.370 0.006 18.186 84.740
expression 9.9402 9.821 1.012 0.331 -11.458 31.338
Omnibus: 2.562 Durbin-Watson: 0.656
Prob(Omnibus): 0.278 Jarque-Bera (JB): 1.824
Skew: -0.697 Prob(JB): 0.402
Kurtosis: 2.013 Cond. No. 80.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.00629
Time: 19:50:25 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.012
Model: OLS Adj. R-squared: -0.064
Method: Least Squares F-statistic: 0.1527
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.702
Time: 19:50:25 Log-Likelihood: -75.212
No. Observations: 15 AIC: 154.4
Df Residuals: 13 BIC: 155.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.6511 100.341 0.545 0.595 -162.122 271.424
expression 5.0889 13.021 0.391 0.702 -23.042 33.219
Omnibus: 0.593 Durbin-Watson: 1.753
Prob(Omnibus): 0.743 Jarque-Bera (JB): 0.577
Skew: 0.047 Prob(JB): 0.749
Kurtosis: 2.043 Cond. No. 77.8