AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.763 0.393 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.670
Model: OLS Adj. R-squared: 0.618
Method: Least Squares F-statistic: 12.85
Date: Thu, 03 Apr 2025 Prob (F-statistic): 8.10e-05
Time: 22:51:21 Log-Likelihood: -100.36
No. Observations: 23 AIC: 208.7
Df Residuals: 19 BIC: 213.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 34.2013 49.942 0.685 0.502 -70.328 138.730
C(dose)[T.1] -28.5948 112.162 -0.255 0.802 -263.352 206.162
expression 3.1793 7.878 0.404 0.691 -13.309 19.668
expression:C(dose)[T.1] 10.5242 15.608 0.674 0.508 -22.144 43.192
Omnibus: 1.396 Durbin-Watson: 1.965
Prob(Omnibus): 0.498 Jarque-Bera (JB): 0.937
Skew: 0.126 Prob(JB): 0.626
Kurtosis: 2.044 Cond. No. 217.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.662
Model: OLS Adj. R-squared: 0.628
Method: Least Squares F-statistic: 19.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 1.95e-05
Time: 22:51:21 Log-Likelihood: -100.63
No. Observations: 23 AIC: 207.3
Df Residuals: 20 BIC: 210.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 17.3288 42.627 0.407 0.689 -71.591 106.248
C(dose)[T.1] 46.6216 11.539 4.040 0.001 22.551 70.692
expression 5.8604 6.707 0.874 0.393 -8.131 19.852
Omnibus: 1.427 Durbin-Watson: 1.979
Prob(Omnibus): 0.490 Jarque-Bera (JB): 0.927
Skew: 0.083 Prob(JB): 0.629
Kurtosis: 2.031 Cond. No. 71.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:51:21 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.386
Model: OLS Adj. R-squared: 0.357
Method: Least Squares F-statistic: 13.21
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00155
Time: 22:51:22 Log-Likelihood: -107.49
No. Observations: 23 AIC: 219.0
Df Residuals: 21 BIC: 221.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -83.8556 45.366 -1.848 0.079 -178.200 10.489
expression 23.9105 6.580 3.634 0.002 10.227 37.594
Omnibus: 0.543 Durbin-Watson: 2.578
Prob(Omnibus): 0.762 Jarque-Bera (JB): 0.339
Skew: -0.282 Prob(JB): 0.844
Kurtosis: 2.813 Cond. No. 56.5

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
3.040 0.107 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.568
Model: OLS Adj. R-squared: 0.450
Method: Least Squares F-statistic: 4.811
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0223
Time: 22:51:22 Log-Likelihood: -69.014
No. Observations: 15 AIC: 146.0
Df Residuals: 11 BIC: 148.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -104.7876 172.011 -0.609 0.555 -483.381 273.805
C(dose)[T.1] -79.4459 273.204 -0.291 0.777 -680.764 521.872
expression 17.7458 17.691 1.003 0.337 -21.191 56.683
expression:C(dose)[T.1] 11.7790 27.311 0.431 0.675 -48.332 71.890
Omnibus: 0.874 Durbin-Watson: 0.692
Prob(Omnibus): 0.646 Jarque-Bera (JB): 0.814
Skew: -0.414 Prob(JB): 0.666
Kurtosis: 2.214 Cond. No. 487.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.560
Model: OLS Adj. R-squared: 0.487
Method: Least Squares F-statistic: 7.642
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00724
Time: 22:51:22 Log-Likelihood: -69.139
No. Observations: 15 AIC: 144.3
Df Residuals: 12 BIC: 146.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -152.7502 126.699 -1.206 0.251 -428.803 123.303
C(dose)[T.1] 38.1834 15.413 2.477 0.029 4.601 71.765
expression 22.6880 13.013 1.744 0.107 -5.664 51.040
Omnibus: 1.362 Durbin-Watson: 0.688
Prob(Omnibus): 0.506 Jarque-Bera (JB): 1.127
Skew: -0.533 Prob(JB): 0.569
Kurtosis: 2.182 Cond. No. 183.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:51:22 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.335
Model: OLS Adj. R-squared: 0.284
Method: Least Squares F-statistic: 6.556
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0237
Time: 22:51:22 Log-Likelihood: -72.237
No. Observations: 15 AIC: 148.5
Df Residuals: 13 BIC: 149.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -264.0140 139.935 -1.887 0.082 -566.326 38.298
expression 35.8990 14.020 2.561 0.024 5.610 66.188
Omnibus: 0.988 Durbin-Watson: 1.572
Prob(Omnibus): 0.610 Jarque-Bera (JB): 0.838
Skew: 0.342 Prob(JB): 0.658
Kurtosis: 2.067 Cond. No. 170.